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The advancement and adop-
tion of machine-learning 
(ML) algorithms constitute 
a crucial innovative disrup-

tion. However, to benefit from these 
innovations within security and 
safety-critical domains, we need to 
be able to evaluate the risks and ben-
efits of the technologies used; in par-
ticular, we need to assure ML-based 
and autonomous systems.

The assurance of complex soft-
ware-based systems often relies on 
a standards-based justification. But 
in the case of autonomous systems, 
it is difficult to rely solely on this 
approach, given the lack of vali-
dated standards, policies, and guid-
ance for such novel technologies. 
Other strategies, such as “driving to 
safety,” that use evidence developed 
from trials and experience to sup-
port claims of safety in deployment 

are unlikely to be successful by themselves,1,2 especially if 
the impact of security threats is taken into account. This 
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reinforces the need for innovation in 
assurance and the development of an 
assurance methodology for autono-
mous systems.

Although forthcoming standards 
and guidelines will eventually have an 
important, yet indirect, role in helping 
us justify behaviors, we need further 
development of assurance frameworks 
that enable us to exploit disruptive 
technologies. In this article, we focus 
on directly investigating the desired 
behavior (e.g., the safety property or 
reliability) of a system through an ar-
gument- or outcome-based approach 
that integrates disparate sources of 
evidence, whether from compliance, 
experience, or product analysis. We 
argue that building trust and trust-
worthiness through argument-based 
mechanisms, specifically the claims, 
arguments, and evidence (CAE) frame-
work (see “The Assurance Framework”), 
allows for the accelerated exploration 
of novel mechanisms that would lead 
to the quality advancement and assur-
ance of disruptive technologies (see 
Figures S1 and S2 in the “The Assur-
ance Framework” sidebar).

The key advantage of a claim-based 
approach is that there is consider-
able flexibility in how the claims are 
demonstrated since different types 
of arguments and evidence can be 
used as appropriate. Such a flexible 
approach is necessary when identify-
ing gaps and challenges in uncharted 
territory, such as the assurance of 
ML-based systems. Indeed, CAE is 
commonly used in safety-critical in-
dustries (such as defense, nuclear, and 
medical) to assure a wide range of sys-
tems and devices and support innova-
tion in assurance.

We are developing a particular 
set of CAE structures that is gener-
ically applicable and helps identify 
how to construct trustworthy ML-
based systems by explicitly consid-
ering evidence of sources of doubt, 

vulnerabilities, and mitigations ad-
dressing the behavior of the system. 
In doing this, we not only assure and 
determine challenges and gaps in 
behavioral properties but also self-
identify gaps within the assurance 
framework itself. In the remainder of 
this article, we describe our systematic 
approach to identifying a range of gaps 
and challenges regarding ML-based 
systems and their assurance.

IDENTIFYING ASSURANCE 
CHALLENGES
The decision to trust an engineering 
system resides in engineering argu-
mentation that addresses the evalua-
tion and risk assessment of the system 
and the role of the different subsys-
tems and components in achieving 
trustworthiness. Although previous 
abstractions, models, and relation-
ships have been constructed in CAE 
for the assurance of traditional soft-
ware systems, it is not clear if the said 
existing blocks are sufficient to pro-
vide compositional argumentation 
enabling trustworthiness in ML-based 
systems. For example, domain-spe-
cific abstractions and arguments may 
need to be developed in CAE to specifi-
cally target ML subcomponents.

To develop a detailed understand-
ing of such assurance challenges, we 
use CAE to create an outline of an over-
all assurance case, proceeding from 
top-level claims, concerning an exper-
imental autonomous vehicle and its 
social context, down to claims regard-
ing the evaluation of subsystems, such 
as the ML model (Figure 1). The case 
study autonomous vehicle, as is typical 
with similar state-of-the-art vehicles, 
contains a heterogeneous mixture of 
commercial off-the-shelf (COTS) com-
ponents, including image recognition, 
lidar, and other items. Apportioning 
the trustworthiness, dependability, 
and requirements of each compo-
nent to consider the real-time and 

safety-related nature of the system is 
challenging. In traditional safety-crit-
ical engineering, there would be di-
versity and defense in depth to reduce 
the trust needed in specific ML compo-
nents; yet we do not know whether this 
is practicable for ML-based systems. 
Argumentation blocks may need to be 
further developed within CAE to deter-
mine how experimental data can allow 
for the comparison and assessment of 
diverse subsystems’ contribution to de-
fense in depth. This, in turn, can also 
inform future architectures of autono-
mous systems.

Beyond the study of the applicabil-
ity of CAE to assure ML-based systems, 
the lens of the assurance case is used 
to identify gaps and challenges regard-
ing techniques and evidence aimed at 
justifying desired system behaviors. 
This is further informed by a review of 
literature, a case study-based assess-
ment of the experimental vehicle, and 
an investigation of our industry part-
ners’ development processes to assess 
the current state of the vehicle and the 
short- to medium-term future vision of 
its use case (approximately two years). 
To see how and whether security is 
addressed in the product lifecycle, we 
used the new U.K. Code of Practice 
PAS 11281, Connected Automotive Eco-
systems—Impact of Security on Safety.4

In the subsequent sections, we dis-
cuss some of the gaps identified re-
garding technical capabilities that may 
enable trust of system behaviors. We 
highlight three areas: requirements, 
security, and verification and valida-
tion (V&V). There are also issues of 
ethics, advanced safety analysis tech-
niques, defense in depth, and diversity 
modeling that we do not address.

GAPS AND CHALLENGES

Innovation, trust, and requirements
There is a need to address the realities of 
the innovation lifecycle and progressively 
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THE ASSURANCE FRAMEWORK

T he claims, arguments, and evidence (CAE) framework 

supports the structured argumentation for complex 

engineering systems. It is based on an explicit claim-based 

approach to justification and relates back to earlier philosoph-

ical work by WigmoreS6 and ToulminS7 as well as drawing 

on theory and empirical research in recent years in the safety 

and assurance cases areas (see John Rushby’s analysisS4 for a 

rigorous review of the field).

At the heart of the CAE framework are three key elements 

(Figure S1). Claims are assertions put forward for general 

acceptance. They are typically statements about a property 

of the system or some subsystem. Claims asserted as true 

without justification are assumptions, and claims supporting 

an argument are subclaims. Arguments link evidence to a 

claim, which can be deterministic, probabilistic, or qualita-

tive. They consist of “statements indicating the general ways 

of arguing being applied in a particular case and implicitly 

relied on and whose trustwor-

thiness is well established“ (see 

ToulminS7), together with valida-

tion of any scientific laws used. In 

an engineering context, arguments 

should be explicit. Evidence serves 

as the basis for justification of a 

claim. Sources of evidence can in-

clude the design, the development 

process, prior experience, testing 

(including statistical testing), or 

formal analysis.

In addition to the basic CAE 

concepts, the framework consists of 

CAE blocks that provide a restrictive 

set of common argument fragments 

and a mechanism for separating in-

ductive and deductive aspects of the 

argumentation (Figure S2). These 

were identified by empirical analysis 

of actual safety cases.S5 The blocks 

are as follows:

 » Decomposition: There is 

partition of some aspect of the 

claim, or divide and conquer.

 » Substitution: A claim about  

an object is refined into a  

claim about an equivalent 

object.

Figure S1. The CAE notation.

Argument

Claim

Subclaim 2Subclaim 1

Evidence 1 Evidence 2

Figure S2. An example of CAE block use. 
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Validate the
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Results R
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The top-level claim
is made precise with a
concretion argument. 

(continued)
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develop requirements, including those 
for trustworthiness and assurance. In 
this innovation approach, the vehicle 
is gradually developed from a platform 
to trial technologies to the final prod-
uct (Figure  2). There is an assurance 
gap in that, when analyzing how much 
the technologies need to be trusted, 
there must be an articulated vision of 
what they will be used for. If the vision 
of how something will be used is not 
clearly formulated, we cannot assess 
how much we need to trust it or what 
the risks are. 

This is particularly important for 
security and systemic risks, where the 
scale and nature of the deployment 
(such as a key part of an urban trans-
port system) will lead to more onerous 
requirements that have to be reflected 
in the earlier technology trials and 
evaluations. Alternatively, more agile 
approaches would be to progressively 
identify these trust requirements 
as the innovation proceeds. But this 

might lead to solutions that do not 
scale and, in the extreme, could not be 
deployed. We believe that the innova-
tion lifecycle subsequently presented 
is typical for many players in the in-
dustry and will be increasingly ad-
opted as the ML components become 
more productized.

Security
Security is a fundamental and inte-
gral attribute of the technical themes 
of the project, in the requirements, 
V&V, and assurance research. While 
the requirements of the new PAS 
11281 Code of Practice may be met in a 
mature implementation of the vehicle 
being studied, on the whole, the secu-
rity will be challenging for industry, 
and advice must be provided on par-
tial and project-specific implementa-
tion of the PAS that allows for matu-
rity growth.

The security aspects need to be inte-
grated into the entire lifecycle: systems 

are not safe if they are not secure. This 
applies to the vehicle as a whole as well 
as to the ML subsystems; most ML sys-
tems have not been designed with a sys-
tematic attention to security.10 The PAS 
clauses address the following areas 
and are equally applicable to the vehi-
cle and its components:

1. security policy, organization, 
and culture

2. security-aware development 
process

3. maintaining effective defenses
4. incident management
5. secure and safe design
6. contributing to a safe and 

secure world.

As we noted previously, the deploy-
ment of autonomous technologies 
may follow an innovation lifecycle 
that first focuses on functionality and 
seeks to progressively add additional 
assurance and security. This will make 

THE ASSURANCE FRAMEWORK (Cont.)
 » Evidence incorporation: Evidence supports the claim, 

with an emphasis on direct support.

 » Concretion: Some aspect of the claim is given a more 

precise definition. 

 » Calculation or proof: Some value of the claim can be 

computed or proved.

The framework also defines connection rules to restrict 

the topology of CAE graphical structures. The use of blocks 

and associated narrative can capture challenges, doubts, and 

rebuttals and illustrates how confidence can be considered as 

an integral part of the justification.

The basic concepts of CAE are supported by an international 

standard,S1 IAEA guidance,S3 and industry guidance.S2 To 

support CAE, a graphical notation can be used to describe the 

interrelationship of evidence, arguments, and claims.S3,S5 In 

practice, top desirable claims, such as “the system is ade-

quately secure,” are too vague or are not directly supported 

or refuted by evidence. Therefore, it is necessary to create 

subclaim nodes until the final nodes of the assessment can be 

directly supported or refuted by evidence.
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Figure 1. A high-level example of an assurance subcase in CAE.
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Figure 2. The typical stages of development from innovation to products.
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the development of the assurance and 
safety cases and associated security 
and safety risk assessments partic-
ularly challenging. From our experi-
ence, we recommend the following:

1. Explicitly define the innovation 
cycle and assess the impact and 
feasibility of adding assurance 
and security.

2. Address the approach to security- 
informed safety at all stages of 
the innovation cycle. If safety, 
security, and resilience require-
ments are largely undefined at 
the start of the innovation cycle, 

the feasibility of progressively 
identifying them during the cy-
cle should be assessed, together  
with the issues involved in evolv-
ing the architecture and increas-
ing the assurance evidence.

3. Apply PAS 11281 to systemati-
cally identify the issues. Use a 
CAE assurance case framework 
and map PAS clauses to this to 
provide a systematic approach 
to applying the PAS.

4. Consider a partial and project- 
specific implementation of  
the PAS to meet the innova-
tion cycle.

5. Collect experience in devel-
oping a security-informed 
safety case and integrating 
security issues into the safety 
analyses needed to imple-
ment the PAS.

V&V
We use the assurance case in CAE top-
down to identify the claims we wish 
to support and bottom-up to evaluate 
the evidence that could be provided by 
them and, hence, systematically assess 
gaps, challenges, and solutions. This 
is shown schematically in Figure 3. 
As part of this analysis, we assessed 

Vision
System
Is Safe

Attribute
Decomposition

Security Is
Adequate

Accuracy
Is Adequate

Failure
Integrity Is
Adequate

Robustness
Is Adequate

Operability
Is Adequate

Reliability
Is Adequate

Decomposition
by Aspects of
Robustness

Decomposition
by Sources of
Unreliability

Pointwise
Robustness
Is Adequate

Gap

Gap

Gap

Functionality
Is Adequate

Absence
of Runtime

Errors

Figure 3. The use of CAE to assess V&V gaps.
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state-of-the-art formal methods for au-
tonomous systems and observed that 
their maturity and applicability are lack-
ing for sufficiently justifying behav-
ioral and vulnerability claims.

Consider the issue of adversarial 
attacks and perturbations,5,6 which 
has been particularly challenging 
with regard to the robustness of ML  
algorithms. Verification researchers have 
focused on the property of pointwise 
robustness, in which a classifier 
function f ' is not robust at point x if 
there exists a point y within h such 
that the classification of y is not the 
same as the classification of x. That 
is, for some point x from the input, 
the classification label remains con-
stant within the neighborhood h 
of x, even when small-value deltas 
(i.e., perturbations) are applied to x. A 
point x would not be robust if it were 
at a decision boundary, and adding a 
perturbation would cause it to be cat-

egorized in the next class. Generally 
speaking, the idea is that a neighbor-
hood h should be reasonably classified 
as the given class.

However, proposed pointwise ro-
bustness verification methods8–10 suf-
fer from the same set of limitations.

 › There is a lack of clarity on how 
to define meaningful regions h 
and manipulations.
○ The neighborhoods surround-

ing a point x that are cur-
rently used are arbitrary and 
conservative.

 › We cannot enumerate all x 
points near which the classifier 
should be approximately con-
stant; that is, we cannot predict 
all future inputs.

Fur thermore, researchers have 
been unable to find compelling threat 

models that required perturbation in-
distinguishability,12 and it has been 
demonstrated that lp, which defines 
the neighborhood region h, is a poor 
proximity for measuring what humans 
actually see.13 Finally, adversarial per-
turbations can be achieved by much 
simpler attacks that do not require ML 
algorithms (e.g., covering a stop sign). 
Thus, the extent to which these tech-
niques can provide us with any level of 
confidence is not very high.

Other verification techniques7,9 aim 
to verify more general behaviors re-
garding ML algorithms, instead of just 
pointwise robustness. Such techniques 
require functional specifications, writ-
ten as constraints, to be fed into a spe-
cialized linear-programming solver to 
be verified against a piecewise linear 
constraint model of the ML algorithm. 
However, the generalization of these 
algorithms is challenging, given the re-
quirement of well-defined and bounded 

traditional system specifications, de-
void of specifications regarding the 
behavior of the ML algorithm itself. 
These techniques are thus applicable to 
well-specified deterministic ML algo-
rithms and cannot be applied to percep-
tion algorithms, which are notoriously 
difficult to specify, let alone verify.

Apart from the ML algorithm, the 
assurance of the non-ML supporting 
components of an autonomous sys-
tem is challenging, given that the use 
of COTS or open source components 
leads to uncertain provenance. Er-
rors within non-ML components can 
propagate and affect the functional-
ity of the ML model.14 It is, therefore, 
important to explore how traditional 
V&V methods—in particular, static 
analysis of C code—can provide assur-
ance for the larger ML system, offer-
ing confidence beyond the component 
level. In the following, we provide a 

preliminary list of results from ana-
lyzing YOLO, a commonly used open 
source ML vision software, and a num-
ber of different run-time errors that 
were identified:

 › a number of memory leaks, such 
as files opened and not closed, and 
temporarily allocated data not 
freed, leading to unpredictable be-
havior, crashes, and corrupted data

 › a large number of calls to 
free where the validity of the 
returned data is not checked 
[this could lead to incorrect (but 
potentially plausible) weights 
being loaded to the network]

 › potential “divide by zeros” in the 
training code (this could lead to 
crashes during online training, 
if the system were to be used in 
such a way)

 › potential floating-point divide 
by zeros, some of which were 
located in the network cost 
calculation function (as noted 
above, this could be an issue 
during online training).

These errors would be applicable 
only to languages such as C and C++. 
Not all errors would be relevant to a 
language such as Python, used in 
the implementation of numerous ML 
libraries and frameworks, as the se-
mantics and implementation of the 
language itself do not enable over-
f low/underf low errors, defined by 
Hutchison et al.14 However, Python 
is a dynamically t y ped language, 
bringing about a different set of pro-
gram errors not exhibited by statically 
typed languages (such as type errors). 
Unfortunately, no static analysis tech-
niques or tools exist to allow for the 
analysis of Python code. Furthermore, 
it is unclear how potential faults aris-
ing from dynamic languages could af-
fect the functionality of an ML model 
itself. This is a large gap within the 
formal methods field that needs to 
be addressed immediately, given the 
deployment of autonomous vehicles 
utilizing Python.

It is unclear how potential faults arising from  
dynamic languages could affect the functionality  

of an ML model itself.
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T here is a need for disruptive 
innovation in the assurance 
of autonomous and ML-based 

systems. We provided a summary 
of the outcome-focused, CAE-based 
framework we are evolving to address 
these systems and used it to iden-
tify specific gaps and challenges; we 
also discussed some solutions. We 
demonstrated the feasibility of de-
ploying the best of existing work 
(e.g., advanced static analysis tech-
niques) and identified the need for 
new approaches.

Overall, there is a need for stronger 
evidence and techniques to assure the 
dependability of ML components and 
for autonomous systems as a whole. In-
deed, there is common good in sharing 
techniques and strategies regarding 
development lifecycles, diversity, secu-
rity, and V&V algorithms in sufficient 
detail for independent analysis and re-
search. We hope to play our part in this 
by sharing our generic developed assur-
ance case and providing, in the public 
domain, the more detailed report this 
article is based on. If we can achieve our 
goal of disruptive assurance, this can 
have a positive impact on innovation in 
a wide range of industries and technol-
ogies, not just ML-based ones. 
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