
SECTION TITLE

82 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E

CYBERTRUST

The advancement and adop-
tion of machine-learning
(ML) algorithms constitute
a crucial innovative disrup-

tion. However, to benefit from these
innovations within security and
safety-critical domains, we need to
be able to evaluate the risks and ben-
efits of the technologies used; in par-
ticular, we need to assure ML-based
and autonomous systems.

The assurance of complex soft-
ware-based systems often relies on
a standards-based justification. But
in the case of autonomous systems,
it is difficult to rely solely on this
approach, given the lack of vali-
dated standards, policies, and guid-
ance for such novel technologies.
Other strategies, such as “driving to
safety,” that use evidence developed
from trials and experience to sup-
port claims of safety in deployment

are unlikely to be successful by themselves,1,2 especially if
the impact of security threats is taken into account. This

Disruptive
Innovations
and Disruptive
Assurance: Assuring
Machine Learning
and Autonomy
Robin Bloomfield, Adelard LLP and City University of London

Heidy Khlaaf, Philippa Ryan Conmy, and Gareth Fletcher, Adelard LLP

Autonomous and machine learning-based

systems are disruptive innovations and thus

require a corresponding disruptive assurance

strategy. We offer an overview of a framework

based on claims, arguments, and evidence

aimed at addressing these systems and

use it to identify specific gaps, challenges,

and potential solutions.

Digital Object Identifier 10.1109/MC.2019.2914775
Date of publication: 27 August 2019

EDITOR EDITOR NAME
Affiliation;

S E P T E M B E R 2 0 1 9 83

EDITOR JEFFREY VOAS
IEEE Fellow; j.voas@ieee.org

reinforces the need for innovation in
assurance and the development of an
assurance methodology for autono-
mous systems.

Although forthcoming standards
and guidelines will eventually have an
important, yet indirect, role in helping
us justify behaviors, we need further
development of assurance frameworks
that enable us to exploit disruptive
technologies. In this article, we focus
on directly investigating the desired
behavior (e.g., the safety property or
reliability) of a system through an ar-
gument- or outcome-based approach
that integrates disparate sources of
evidence, whether from compliance,
experience, or product analysis. We
argue that building trust and trust-
worthiness through argument-based
mechanisms, specifically the claims,
arguments, and evidence (CAE) frame-
work (see “The Assurance Framework”),
allows for the accelerated exploration
of novel mechanisms that would lead
to the quality advancement and assur-
ance of disruptive technologies (see
Figures S1 and S2 in the “The Assur-
ance Framework” sidebar).

The key advantage of a claim-based
approach is that there is consider-
able flexibility in how the claims are
demonstrated since different types
of arguments and evidence can be
used as appropriate. Such a flexible
approach is necessary when identify-
ing gaps and challenges in uncharted
territory, such as the assurance of
ML-based systems. Indeed, CAE is
commonly used in safety-critical in-
dustries (such as defense, nuclear, and
medical) to assure a wide range of sys-
tems and devices and support innova-
tion in assurance.

We are developing a particular
set of CAE structures that is gener-
ically applicable and helps identify
how to construct trustworthy ML-
based systems by explicitly consid-
ering evidence of sources of doubt,

vulnerabilities, and mitigations ad-
dressing the behavior of the system.
In doing this, we not only assure and
determine challenges and gaps in
behavioral properties but also self-
identify gaps within the assurance
framework itself. In the remainder of
this article, we describe our systematic
approach to identifying a range of gaps
and challenges regarding ML-based
systems and their assurance.

IDENTIFYING ASSURANCE
CHALLENGES
The decision to trust an engineering
system resides in engineering argu-
mentation that addresses the evalua-
tion and risk assessment of the system
and the role of the different subsys-
tems and components in achieving
trustworthiness. Although previous
abstractions, models, and relation-
ships have been constructed in CAE
for the assurance of traditional soft-
ware systems, it is not clear if the said
existing blocks are sufficient to pro-
vide compositional argumentation
enabling trustworthiness in ML-based
systems. For example, domain-spe-
cific abstractions and arguments may
need to be developed in CAE to specifi-
cally target ML subcomponents.

To develop a detailed understand-
ing of such assurance challenges, we
use CAE to create an outline of an over-
all assurance case, proceeding from
top-level claims, concerning an exper-
imental autonomous vehicle and its
social context, down to claims regard-
ing the evaluation of subsystems, such
as the ML model (Figure 1). The case
study autonomous vehicle, as is typical
with similar state-of-the-art vehicles,
contains a heterogeneous mixture of
commercial off-the-shelf (COTS) com-
ponents, including image recognition,
lidar, and other items. Apportioning
the trustworthiness, dependability,
and requirements of each compo-
nent to consider the real-time and

safety-related nature of the system is
challenging. In traditional safety-crit-
ical engineering, there would be di-
versity and defense in depth to reduce
the trust needed in specific ML compo-
nents; yet we do not know whether this
is practicable for ML-based systems.
Argumentation blocks may need to be
further developed within CAE to deter-
mine how experimental data can allow
for the comparison and assessment of
diverse subsystems’ contribution to de-
fense in depth. This, in turn, can also
inform future architectures of autono-
mous systems.

Beyond the study of the applicabil-
ity of CAE to assure ML-based systems,
the lens of the assurance case is used
to identify gaps and challenges regard-
ing techniques and evidence aimed at
justifying desired system behaviors.
This is further informed by a review of
literature, a case study-based assess-
ment of the experimental vehicle, and
an investigation of our industry part-
ners’ development processes to assess
the current state of the vehicle and the
short- to medium-term future vision of
its use case (approximately two years).
To see how and whether security is
addressed in the product lifecycle, we
used the new U.K. Code of Practice
PAS 11281, Connected Automotive Eco-
systems—Impact of Security on Safety.4

In the subsequent sections, we dis-
cuss some of the gaps identified re-
garding technical capabilities that may
enable trust of system behaviors. We
highlight three areas: requirements,
security, and verification and valida-
tion (V&V). There are also issues of
ethics, advanced safety analysis tech-
niques, defense in depth, and diversity
modeling that we do not address.

GAPS AND CHALLENGES

Innovation, trust, and requirements
There is a need to address the realities of
the innovation lifecycle and progressively

84	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

CYBERTRUST

THE ASSURANCE FRAMEWORK

T he claims, arguments, and evidence (CAE) framework

supports the structured argumentation for complex

engineering systems. It is based on an explicit claim-based

approach to justification and relates back to earlier philosoph-

ical work by WigmoreS6 and ToulminS7 as well as drawing

on theory and empirical research in recent years in the safety

and assurance cases areas (see John Rushby’s analysisS4 for a

rigorous review of the field).

At the heart of the CAE framework are three key elements

(Figure S1). Claims are assertions put forward for general

acceptance. They are typically statements about a property

of the system or some subsystem. Claims asserted as true

without justification are assumptions, and claims supporting

an argument are subclaims. Arguments link evidence to a

claim, which can be deterministic, probabilistic, or qualita-

tive. They consist of “statements indicating the general ways

of arguing being applied in a particular case and implicitly

relied on and whose trustwor-

thiness is well established“ (see

ToulminS7), together with valida-

tion of any scientific laws used. In

an engineering context, arguments

should be explicit. Evidence serves

as the basis for justification of a

claim. Sources of evidence can in-

clude the design, the development

process, prior experience, testing

(including statistical testing), or

formal analysis.

In addition to the basic CAE

concepts, the framework consists of

CAE blocks that provide a restrictive

set of common argument fragments

and a mechanism for separating in-

ductive and deductive aspects of the

argumentation (Figure S2). These

were identified by empirical analysis

of actual safety cases.S5 The blocks

are as follows:

»» Decomposition: There is

partition of some aspect of the

claim, or divide and conquer.

»» Substitution: A claim about

an object is refined into a

claim about an equivalent

object.

Figure S1. The CAE notation.

Argument

Claim

Subclaim 2Subclaim 1

Evidence 1 Evidence 2

Figure S2. An example of CAE block use.

Top-Level Claim

Concretion

Claim (X)

Decomposition,
Substitution, or

Calculation

Application of
Argument
Justified

Claim (A) Claim (B) Side Claims
Validate the
Argument

Evidence
Incorporation

Results R
Directly Support

Claim (A)

Results R

Claim (A) is now
precise enough to

be directly
supported/rebutted

by evidence.

The claim cannot be
directly shown by

evidence, so one of the
CAE blocks is selected

to define subclaims.

The top-level claim
is made precise with a
concretion argument.

(continued)

	 S E P T E M B E R 2 0 1 9 � 85

develop requirements, including those
for trustworthiness and assurance. In
this innovation approach, the vehicle
is gradually developed from a platform
to trial technologies to the final prod-
uct (Figure 2). There is an assurance
gap in that, when analyzing how much
the technologies need to be trusted,
there must be an articulated vision of
what they will be used for. If the vision
of how something will be used is not
clearly formulated, we cannot assess
how much we need to trust it or what
the risks are.

This is particularly important for
security and systemic risks, where the
scale and nature of the deployment
(such as a key part of an urban trans-
port system) will lead to more onerous
requirements that have to be reflected
in the earlier technology trials and
evaluations. Alternatively, more agile
approaches would be to progressively
identify these trust requirements
as the innovation proceeds. But this

might lead to solutions that do not
scale and, in the extreme, could not be
deployed. We believe that the innova-
tion lifecycle subsequently presented
is typical for many players in the in-
dustry and will be increasingly ad-
opted as the ML components become
more productized.

Security
Security is a fundamental and inte-
gral attribute of the technical themes
of the project, in the requirements,
V&V, and assurance research. While
the requirements of the new PAS
11281 Code of Practice may be met in a
mature implementation of the vehicle
being studied, on the whole, the secu-
rity will be challenging for industry,
and advice must be provided on par-
tial and project-specific implementa-
tion of the PAS that allows for matu-
rity growth.

The security aspects need to be inte-
grated into the entire lifecycle: systems

are not safe if they are not secure. This
applies to the vehicle as a whole as well
as to the ML subsystems; most ML sys-
tems have not been designed with a sys-
tematic attention to security.10 The PAS
clauses address the following areas
and are equally applicable to the vehi-
cle and its components:

1.	 security policy, organization,
and culture

2.	 security-aware development
process

3.	 maintaining effective defenses
4.	 incident management
5.	 secure and safe design
6.	 contributing to a safe and

secure world.

As we noted previously, the deploy-
ment of autonomous technologies
may follow an innovation lifecycle
that first focuses on functionality and
seeks to progressively add additional
assurance and security. This will make

THE ASSURANCE FRAMEWORK (Cont.)
»» Evidence incorporation: Evidence supports the claim,

with an emphasis on direct support.

»» Concretion: Some aspect of the claim is given a more

precise definition.

»» Calculation or proof: Some value of the claim can be

computed or proved.

The framework also defines connection rules to restrict

the topology of CAE graphical structures. The use of blocks

and associated narrative can capture challenges, doubts, and

rebuttals and illustrates how confidence can be considered as

an integral part of the justification.

The basic concepts of CAE are supported by an international

standard,S1 IAEA guidance,S3 and industry guidance.S2 To

support CAE, a graphical notation can be used to describe the

interrelationship of evidence, arguments, and claims.S3,S5 In

practice, top desirable claims, such as “the system is ade-

quately secure,” are too vague or are not directly supported

or refuted by evidence. Therefore, it is necessary to create

subclaim nodes until the final nodes of the assessment can be

directly supported or refuted by evidence.

REFERENCES
S1.	 Systems and Software Engineering—Systems and Software

Assurance, Part 2: Assurance Case, ISO/IEC 15026-2:2011,
2011.

S2.	 P. G. Bishop and R. E. Bloomfield, “A methodology for safety
case development,” in Industrial Perspectives of Safety-Critical
Systems: Proceedings of the Sixth Safety-Critical Systems Sympo-
sium, Birmingham 1998, F. Redmill and T. Anderson, Eds. London:
Springer-Verlag, 1998, pp. 194–203.

S3.	 International Atomic Energy Agency, “Dependability assessment of
software for safety instrumentation and control systems at nuclear
power plants,” IAEA Nuclear Energy Series NP-T-3.27, 2018. [Online].
Available: https://www-pub.iaea.org/books/IAEABooks/12232
/Dependability-Assessment-of-Software-for-Safety-Instrumentation-
and-Control-Systems-at-Nuclear-Power-Plants

S4.	 J. Rushby, “The interpretation and evaluation of assurance cases,”
SRI Int., Menlo Park CA, Tech. Rep. SRI-CSL-15-01, July 2015.

S5.	 R. Bloomfield and K. Netkachova, “Building blocks for assurance
cases,” in Proc. IEEE Int. Symp. Software Reliability Engineering
Workshops (ISSREW), Nov. 2014, pp. 186–191. doi: 10.1109/
ISSREW.2014.72.

S6.	 J. H. Wigmore, “The science of judicial proof,” Virginia Law
Rev., vol. 25, no. 1, pp. 120–127, Nov. 1938. doi: 10.2307/
1068138.

S7.	 S. E. Toulmin, The Uses of Argument. Cambridge Univ. Press,
United Kingdom. 1958.

86	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

CYBERTRUST

Supply Chain
Deployed

Vehicle Adheres
to Safety

Requirements

Safety
Requirements Functional

Decomposition

Sensors Meet
Requirements

Vision Meets
Requirements

Robo Vision
Meets

Requirements

Sensor Fusion
Meets

Requirements

Localization
Meets

Requirements

Route
Planning Meets
Requirements

Concretion

Figure 1. A high-level example of an assurance subcase in CAE.

Lab
Components,

Tests

Road Vehicle in
Constrained
Environment

and Test Pilots

Richer
Environment

and Test Pilots

Public Use
(Small Scale)

Widespread Use
in Current

Infrastructure

Widespread
Use in

Heterogeneous
Smart Cities

Attack Surface and Impact
Increasing

Greater Speed, Kinetics

Figure 2. The typical stages of development from innovation to products.

	 S E P T E M B E R 2 0 1 9 � 87

the development of the assurance and
safety cases and associated security
and safety risk assessments partic-
ularly challenging. From our experi-
ence, we recommend the following:

1.	 Explicitly define the innovation
cycle and assess the impact and
feasibility of adding assurance
and security.

2.	 Address the approach to security-
informed safety at all stages of
the innovation cycle. If safety,
security, and resilience require-
ments are largely undefined at
the start of the innovation cycle,

the feasibility of progressively
identifying them during the cy-
cle should be assessed, together
with the issues involved in evolv-
ing the architecture and increas-
ing the assurance evidence.

3.	 Apply PAS 11281 to systemati-
cally identify the issues. Use a
CAE assurance case framework
and map PAS clauses to this to
provide a systematic approach
to applying the PAS.

4.	 Consider a partial and project-
specific implementation of
the PAS to meet the innova-
tion cycle.

5.	 Collect experience in devel-
oping a security-informed
safety case and integrating
security issues into the safety
analyses needed to imple-
ment the PAS.

V&V
We use the assurance case in CAE top-
down to identify the claims we wish
to support and bottom-up to evaluate
the evidence that could be provided by
them and, hence, systematically assess
gaps, challenges, and solutions. This
is shown schematically in Figure 3.
As part of this analysis, we assessed

Vision
System
Is Safe

Attribute
Decomposition

Security Is
Adequate

Accuracy
Is Adequate

Failure
Integrity Is
Adequate

Robustness
Is Adequate

Operability
Is Adequate

Reliability
Is Adequate

Decomposition
by Aspects of
Robustness

Decomposition
by Sources of
Unreliability

Pointwise
Robustness
Is Adequate

Gap

Gap

Gap

Functionality
Is Adequate

Absence
of Runtime

Errors

Figure 3. The use of CAE to assess V&V gaps.

88	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

CYBERTRUST

state-of-the-art formal methods for au-
tonomous systems and observed that
their maturity and applicability are lack-
ing for sufficiently justifying behav-
ioral and vulnerability claims.

Consider the issue of adversarial
attacks and perturbations,5,6 which
has been particularly challenging
with regard to the robustness of ML
algorithms. Verification researchers have
focused on the property of pointwise
robustness, in which a classifier
function f ' is not robust at point x if
there exists a point y within h such
that the classification of y is not the
same as the classification of x. That
is, for some point x from the input,
the classification label remains con-
stant within the neighborhood h
of x, even when small-value deltas
(i.e., perturbations) are applied to x. A
point x would not be robust if it were
at a decision boundary, and adding a
perturbation would cause it to be cat-

egorized in the next class. Generally
speaking, the idea is that a neighbor-
hood h should be reasonably classified
as the given class.

However, proposed pointwise ro-
bustness verification methods8–10 suf-
fer from the same set of limitations.

›› There is a lack of clarity on how
to define meaningful regions h
and manipulations.
○	 The neighborhoods surround-

ing a point x that are cur-
rently used are arbitrary and
conservative.

›› We cannot enumerate all x
points near which the classifier
should be approximately con-
stant; that is, we cannot predict
all future inputs.

Fur thermore, researchers have
been unable to find compelling threat

models that required perturbation in-
distinguishability,12 and it has been
demonstrated that lp, which defines
the neighborhood region h, is a poor
proximity for measuring what humans
actually see.13 Finally, adversarial per-
turbations can be achieved by much
simpler attacks that do not require ML
algorithms (e.g., covering a stop sign).
Thus, the extent to which these tech-
niques can provide us with any level of
confidence is not very high.

Other verification techniques7,9 aim
to verify more general behaviors re-
garding ML algorithms, instead of just
pointwise robustness. Such techniques
require functional specifications, writ-
ten as constraints, to be fed into a spe-
cialized linear-programming solver to
be verified against a piecewise linear
constraint model of the ML algorithm.
However, the generalization of these
algorithms is challenging, given the re-
quirement of well-defined and bounded

traditional system specifications, de-
void of specifications regarding the
behavior of the ML algorithm itself.
These techniques are thus applicable to
well-specified deterministic ML algo-
rithms and cannot be applied to percep-
tion algorithms, which are notoriously
difficult to specify, let alone verify.

Apart from the ML algorithm, the
assurance of the non-ML supporting
components of an autonomous sys-
tem is challenging, given that the use
of COTS or open source components
leads to uncertain provenance. Er-
rors within non-ML components can
propagate and affect the functional-
ity of the ML model.14 It is, therefore,
important to explore how traditional
V&V methods—in particular, static
analysis of C code—can provide assur-
ance for the larger ML system, offer-
ing confidence beyond the component
level. In the following, we provide a

preliminary list of results from ana-
lyzing YOLO, a commonly used open
source ML vision software, and a num-
ber of different run-time errors that
were identified:

›› a number of memory leaks, such
as files opened and not closed, and
temporarily allocated data not
freed, leading to unpredictable be-
havior, crashes, and corrupted data

›› a large number of calls to
free where the validity of the
returned data is not checked
[this could lead to incorrect (but
potentially plausible) weights
being loaded to the network]

›› potential “divide by zeros” in the
training code (this could lead to
crashes during online training,
if the system were to be used in
such a way)

›› potential floating-point divide
by zeros, some of which were
located in the network cost
calculation function (as noted
above, this could be an issue
during online training).

These errors would be applicable
only to languages such as C and C++.
Not all errors would be relevant to a
language such as Python, used in
the implementation of numerous ML
libraries and frameworks, as the se-
mantics and implementation of the
language itself do not enable over-
f low/underf low errors, defined by
Hutchison et al.14 However, Python
is a dynamically t y ped language,
bringing about a different set of pro-
gram errors not exhibited by statically
typed languages (such as type errors).
Unfortunately, no static analysis tech-
niques or tools exist to allow for the
analysis of Python code. Furthermore,
it is unclear how potential faults aris-
ing from dynamic languages could af-
fect the functionality of an ML model
itself. This is a large gap within the
formal methods field that needs to
be addressed immediately, given the
deployment of autonomous vehicles
utilizing Python.

It is unclear how potential faults arising from
dynamic languages could affect the functionality

of an ML model itself.

	 S E P T E M B E R 2 0 1 9 � 89

T here is a need for disruptive
innovation in the assurance
of autonomous and ML-based

systems. We provided a summary
of the outcome-focused, CAE-based
framework we are evolving to address
these systems and used it to iden-
tify specific gaps and challenges; we
also discussed some solutions. We
demonstrated the feasibility of de-
ploying the best of existing work
(e.g., advanced static analysis tech-
niques) and identified the need for
new approaches.

Overall, there is a need for stronger
evidence and techniques to assure the
dependability of ML components and
for autonomous systems as a whole. In-
deed, there is common good in sharing
techniques and strategies regarding
development lifecycles, diversity, secu-
rity, and V&V algorithms in sufficient
detail for independent analysis and re-
search. We hope to play our part in this
by sharing our generic developed assur-
ance case and providing, in the public
domain, the more detailed report this
article is based on. If we can achieve our
goal of disruptive assurance, this can
have a positive impact on innovation in
a wide range of industries and technol-
ogies, not just ML-based ones.

ACKNOWLEDGMENTS
This article discusses work under-
taken within the Towards Identify-
ing and closing Gaps in Assurance of
autonomous Road vehicleS (TIGARS)
project. The project is a collaboration
between Adelard, Witz, the City Uni-
versity of London, the University of
Nagoya, and Kanagawa University.
This work is partially supported by
the Assuring Autonomy International
Programme, a partnership between
Lloyd’s Register Foundation and the
University of York. We acknowledge
the additional support of the U.K. De-
partment for Transport.

REFERENCES
1.	 N. Kalra and S. Paddock, Driving to

Safety: How Many Miles of Driving

Would It Take to Demonstrate Autono-
mous Vehicle Reliability? Santa Mon-
ica, CA: RAND Corporation, 2016.
[Online]. Available: https://www
.rand.org/pubs/research_reports
/RR1478.html

2.	 P. Koopman and M. Wagner, “Chal-
lenges in autonomous vehicle testing
and validation,” SAE Int. J. Transp.
Safety, vol. 4, no. 1, pp. 15–24, 2016.

3.	 R. Bloomfield, P. Bishop, E. Butler,
and R. Stroud, “Security-informed
safety: Supporting stakeholders
with codes of practice [Cybertrust],”
Computer, vol. 51, no. 8, pp. 60–65,
Aug. 2018.

4.	 Connected Automotive Ecosystems—
Impact of Security on Safety, British
Standards Institution, PAS 11281, 2018.

5.	 C. Szegedy et al., Intriguing prop-
erties of neural networks. 2013.
[Online]. Available: https://arxiv
.org/abs/1312.6199

6.	 I. Goodfellow, J. Shlens, and C.
Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. Int.
Conf. Learning Representations—Com-
putational and Biological Learning
Society, 2015. [Online]. Available:
https://arxiv.org/abs/1412.6572v3

7.	 L. Pulina and A. Tacchella, “An
abstraction-refinement approach
to verification of artificial neural
networks,” Computer Aided Verifi-
cation, CAV 2010, Lecture Notes in
Computer Science, vol 6174, T. Touili,
B. Cook, and P. Jackson, Eds. Berlin:
Springer, pp. 243–257.

8.	 X. Huang, M. Kwiatkowska, S. Wang,
and M. Wu, Safety verification of
deep neural networks. 2016. [On-
line]. Available: https://arxiv.org
/abs/1610.06940

9.	 G. Katz, C. Barrett, D. Dill, K. Julian,
and M. Kochenderfer, Reluplex: An
efficient SMT solver for verifying
deep neural networks. 2017. [Online].
Available: https://arxiv.org
/abs/1702.01135

10.	 N. Papernot, P. McDaniel, A. Sinha,
and M. Wellman, Towards the
science of security and privacy in
machine learning. 2016. [Online].

Available: https://arxiv.org
/abs/1611.03814

11.	 W. Ruan, X. Huang, and M. Z.
Kwiatkowska, Reachability
analysis of deep neural networks
with provable guarantees. 2018.
[Online]. Available: http://arxiv.org
/abs/1805.02242

12.	 J. Gilmer, R. Adams, I. Goodfellow, D.
Andersen, and G. Dahl, Motivating
the rules of the game for adversarial
example research. 2018. [Online].
Available: https://arxiv.org
/abs/1807.06732

13.	 Z. Wang and A. C. Bovik, “Mean
squared error: Love it or leave it? A
new look at signal fidelity mea-
sures,” IEEE Signal Process. Mag.,
vol. 26, no. 1, pp. 98–117, 2009.

14.	 C. Hutchison et al., “Robustness test-
ing of autonomy software,” in Proc.
IEEE/ACM 40th Int. Conf. Software
Engineering: Software Engineering in
Practice Track, Gothenburg, Sweden,
May 27–June 3, 2018, pp. 276–285.

ROBIN BLOOMFIELD is with Adelard
LLP and the City University of London.
Contact him at reb@adelard.com or
reb@csr.city.ac.uk.

HEIDY KHLAAF is with Adelard LLP.
Contact her at hak@adelard.com.

PHILIPPA RYAN CONMY is with
Adelard LLP. Contact her at pmrc@
addelard.com.

GARETH FLETCHER is with Adelard
LLP. Contact him at gtf@adelard.com.

