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AUTOMATED CTL* VERIFICATION

First known tool for automatically proving CTL* properties of 
infinite-state programs. 

Solution based precondition synthesis over prophecy 
variables which determine nondeterministic decisions 
regarding which paths are taken.

 Prophecies:  Variables that summarize the future of the 
program execution.
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Logic reasoning about propositions qualified in 
terms of time.

Used as a specification language as it encompasses 
safety, liveness, fairness, etc.

Most commonly used sub-logics are CTL*, CTL 
(state based), and LTL (trace based).  
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CTL VS LTL

CTL

LTL
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CTL

Reasoning about sets of states.

Reasoning about non-deterministic (branching) programs. 

φ ::= α | ¬α | φ ∧ φ | φ ∨ φ | AXφ | AFφ | A[φWφ] | EXφ | 
EGφ | E[φUφ]

A φ – All: φ has to hold on all paths starting from all initial states.

E φ – Exists: there exists at least one path starting from all initial 
states where φ holds.

6



X φ – Next: φ has to hold at the next state.

G φ – Globally: φ has to hold on the all states along a path.

F φ – Finally: φ eventually has to hold.

φ1 U φ2 – Until: φ1 has to hold at least until at some 
position φ2 holds. φ2 must be verified in the future.

φ1 W φ2 – Weak until: φ1 has to hold until φ2 holds.
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LTL

Reasoning about sets of paths.

Reasoning about concurrent programs. 

ψ ::= α | ψ∧ψ | ψ∨ψ | Gψ | Fψ | [ψWψ] | [ψUψ] .
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CTL∗ can express both CTL, LTL, and properties requiring 
path and state based interplay. 

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | Aψ | Eψ

ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Gψ | Fψ | [ψWψ] | [ψUψ]
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CTL*

LTL: Can naturally express fairness: GF p ⇒ GF q.

CTL: Can express existential properties. 

CTL* allows the interplay between LTL and CTL properties:

 “Along some future an event occurs infinitely often”  (EGF)

 EFG(¬x ∧ (EGF x))  

AG(EG ¬x) ∨ (EFG y)
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VERIFYING CTL* (OVERVIEW)

Recurse over a CTL∗ formula, and for each sub-formula θ 
produce a satisfying precondition. 

Deconstruction allows us to identify the interplay of path 
and state formulae. 

 State formulae preconditions acquired via existing CTL 
techniques.

How to acquire sufficient path formulae preconditions 
that admit a sound interaction with state formulae?
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VERIFYING CTL* (OVERVIEW)

1. Formula: Over-approximate a path sub-formula to a 
universal CTL formula (ACTL).

2. TS: Nondeterministic decisions regarding which paths are 
taken are determined by prophecy variables.

3. Use an existing CTL model-checker. 

4. Apply QE over prophecies to acquire sound precondition.
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EXAMPLE
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Prove the CTL∗ property EFG x = 1.

`1 `2

⇢1 : x0 = 1

⇢2 : x0 = x

⇢3 : x0 = 0

⇢4 : x0 = x

`1 `2

⇢1 : x0 = 1

⇢2 : n`1 6= 0
n

0
`1 = n`1 � 1

x

0 = x

⇢3 : n`1 = 0
x

0 = 0

⇢4 : x0 = x

(a) (b)

Fig. 1: (a) The control-flow graph of a program for which we wish to prove the CTL⇤

property EFG x = 1. (b) The control-flow graph after calling Determinize, it includes
the prophecy variable n`1 corresponding to the nondeterministic relation pair (⇢2, ⇢3).

is, nondeterministic decisions regarding which paths are taken would be deter-
mined by prophecy variables, which determine future outcomes of the program
execution, and their values [1]. Recall that relation pairs are distinguished if they
are not part of the same strongly connected subgraph.

QuantElim acquires the proper set of states that satisfy a formula which has
been verified over a determinized program. This allows for the path quantification
present within a CTL⇤ formula, that is, whether all paths (or some paths) starting
from a state satisfy a path formula. When a CTL⇤ formula of the form ✓ ::= A |
E is reached after acquiring a set of states satisfying  , ✓ is verified on the
same determinized program used for  . We then must use quantifier elimination
to acquire the proper set of states that satisfy ✓, thus quantifying the assertions
over the values of the prophecy variables. If the formula is of the form A ,
we universally quantify the prophecy variables appearing in the set of states
that satisfy A . If the formula is of the form E , we existentially quantify the
prophecy variables.

Example. Consider the program in Fig. 1(a) and the property EFG x = 1 stating
that there exists a possible future where x = 1 will eventually become true and
stay true. This is a system stabilization property which can only be expressed
in CTL⇤. We begin by identifying that G x = 1 is a path formula, and thus use
Approximate to return the over-approximated state formula AG x = 1. We
then initiate a CTL model checking task where we seek a set of states aG such
that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are
eventually reached in a possible future from the program’s initial states such that
AG x = 1 holds. However, no such set of states exists as the nondeterministic
choice from `1 to ⇢2 and ⇢3 does not allow us to determine if we will eventually
leave the loop or not. That is, there exists no set of states which can exemplify the
infinite branching possibilities of leaving ⇢2 to possibly reaching ⇢3 or remaining
in ⇢2 forever. In order to reason about the original sub-formula G x = 1, we
must be observing sets of paths, not states. Given that we over-approximated our
formula in a way that allows us to only reason about states, we thus symbolically
determinize the program to simultaneously simulate all possible related paths
through the control flow graph and try to separate them to originate from distinct
states in the program.
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APPROXIMATE
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Prove the CTL* sub-property G x = 1.

Over-approximate to AG x = 1.

No set of states exemplify the infinite possibilities of leaving 
ρ2 to possibly reaching ρ3 or remaining in ρ2 forever. 

`1 `2

⇢1 : x0 = 1

⇢2 : x0 = x

⇢3 : x0 = 0

⇢4 : x0 = x

`1 `2

⇢1 : x0 = 1

⇢2 : n`1 6= 0
n

0
`1 = n`1 � 1

x

0 = x

⇢3 : n`1 = 0
x

0 = 0

⇢4 : x0 = x

(a) (b)

Fig. 1: (a) The control-flow graph of a program for which we wish to prove the CTL⇤

property EFG x = 1. (b) The control-flow graph after calling Determinize, it includes
the prophecy variable n`1 corresponding to the nondeterministic relation pair (⇢2, ⇢3).

is, nondeterministic decisions regarding which paths are taken would be deter-
mined by prophecy variables, which determine future outcomes of the program
execution, and their values [1]. Recall that relation pairs are distinguished if they
are not part of the same strongly connected subgraph.

QuantElim acquires the proper set of states that satisfy a formula which has
been verified over a determinized program. This allows for the path quantification
present within a CTL⇤ formula, that is, whether all paths (or some paths) starting
from a state satisfy a path formula. When a CTL⇤ formula of the form ✓ ::= A |
E is reached after acquiring a set of states satisfying  , ✓ is verified on the
same determinized program used for  . We then must use quantifier elimination
to acquire the proper set of states that satisfy ✓, thus quantifying the assertions
over the values of the prophecy variables. If the formula is of the form A ,
we universally quantify the prophecy variables appearing in the set of states
that satisfy A . If the formula is of the form E , we existentially quantify the
prophecy variables.

Example. Consider the program in Fig. 1(a) and the property EFG x = 1 stating
that there exists a possible future where x = 1 will eventually become true and
stay true. This is a system stabilization property which can only be expressed
in CTL⇤. We begin by identifying that G x = 1 is a path formula, and thus use
Approximate to return the over-approximated state formula AG x = 1. We
then initiate a CTL model checking task where we seek a set of states aG such
that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are
eventually reached in a possible future from the program’s initial states such that
AG x = 1 holds. However, no such set of states exists as the nondeterministic
choice from `1 to ⇢2 and ⇢3 does not allow us to determine if we will eventually
leave the loop or not. That is, there exists no set of states which can exemplify the
infinite branching possibilities of leaving ⇢2 to possibly reaching ⇢3 or remaining
in ⇢2 forever. In order to reason about the original sub-formula G x = 1, we
must be observing sets of paths, not states. Given that we over-approximated our
formula in a way that allows us to only reason about states, we thus symbolically
determinize the program to simultaneously simulate all possible related paths
through the control flow graph and try to separate them to originate from distinct
states in the program.

7



DETERMINIZE 
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Construct a partially determinized program over relation pairs.

Transitions stemming from same location, but are not part of 
the same strongly connected subgraph.

We identify (ρ2, ρ3) as a relation pair. 
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the prophecy variable n`1 corresponding to the nondeterministic relation pair (⇢2, ⇢3).

is, nondeterministic decisions regarding which paths are taken would be deter-
mined by prophecy variables, which determine future outcomes of the program
execution, and their values [1]. Recall that relation pairs are distinguished if they
are not part of the same strongly connected subgraph.

QuantElim acquires the proper set of states that satisfy a formula which has
been verified over a determinized program. This allows for the path quantification
present within a CTL⇤ formula, that is, whether all paths (or some paths) starting
from a state satisfy a path formula. When a CTL⇤ formula of the form ✓ ::= A |
E is reached after acquiring a set of states satisfying  , ✓ is verified on the
same determinized program used for  . We then must use quantifier elimination
to acquire the proper set of states that satisfy ✓, thus quantifying the assertions
over the values of the prophecy variables. If the formula is of the form A ,
we universally quantify the prophecy variables appearing in the set of states
that satisfy A . If the formula is of the form E , we existentially quantify the
prophecy variables.

Example. Consider the program in Fig. 1(a) and the property EFG x = 1 stating
that there exists a possible future where x = 1 will eventually become true and
stay true. This is a system stabilization property which can only be expressed
in CTL⇤. We begin by identifying that G x = 1 is a path formula, and thus use
Approximate to return the over-approximated state formula AG x = 1. We
then initiate a CTL model checking task where we seek a set of states aG such
that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are
eventually reached in a possible future from the program’s initial states such that
AG x = 1 holds. However, no such set of states exists as the nondeterministic
choice from `1 to ⇢2 and ⇢3 does not allow us to determine if we will eventually
leave the loop or not. That is, there exists no set of states which can exemplify the
infinite branching possibilities of leaving ⇢2 to possibly reaching ⇢3 or remaining
in ⇢2 forever. In order to reason about the original sub-formula G x = 1, we
must be observing sets of paths, not states. Given that we over-approximated our
formula in a way that allows us to only reason about states, we thus symbolically
determinize the program to simultaneously simulate all possible related paths
through the control flow graph and try to separate them to originate from distinct
states in the program.

7



DETERMINIZE 

16

Introduce prophecy variable (nL1) associated with the relation 
pair (ρ2, ρ3).

Used to make predictions about the path taken. 
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Our formula would now only be valid if we can find a set of states that are
eventually reached in a possible future from the program’s initial states such that
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through the control flow graph and try to separate them to originate from distinct
states in the program.
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Approximate to return the over-approximated state formula AG x = 1. We
then initiate a CTL model checking task where we seek a set of states aG such
that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.
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eventually reached in a possible future from the program’s initial states such that
AG x = 1 holds. However, no such set of states exists as the nondeterministic
choice from `1 to ⇢2 and ⇢3 does not allow us to determine if we will eventually
leave the loop or not. That is, there exists no set of states which can exemplify the
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in ⇢2 forever. In order to reason about the original sub-formula G x = 1, we
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A positive number chosen predicts the number of instances that 
transition ρ2 is visited before transitioning to ρ3. 

We remain in ρ2 until nL1 = 0, with nL1 being decremented each time.

A negative assignment to nL1 denotes remaining in ρ2 forever, or non-
termination.
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in CTL⇤. We begin by identifying that G x = 1 is a path formula, and thus use
Approximate to return the over-approximated state formula AG x = 1. We
then initiate a CTL model checking task where we seek a set of states aG such
that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are
eventually reached in a possible future from the program’s initial states such that
AG x = 1 holds. However, no such set of states exists as the nondeterministic
choice from `1 to ⇢2 and ⇢3 does not allow us to determine if we will eventually
leave the loop or not. That is, there exists no set of states which can exemplify the
infinite branching possibilities of leaving ⇢2 to possibly reaching ⇢3 or remaining
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must be observing sets of paths, not states. Given that we over-approximated our
formula in a way that allows us to only reason about states, we thus symbolically
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We can now use an existing CTL model-checker! 

Returns an assertion characterizing the states in which AG x = 1. 

aG = (l1 ∧ nL1 < 0) is returned.  
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is, nondeterministic decisions regarding which paths are taken would be deter-
mined by prophecy variables, which determine future outcomes of the program
execution, and their values [1]. Recall that relation pairs are distinguished if they
are not part of the same strongly connected subgraph.

QuantElim acquires the proper set of states that satisfy a formula which has
been verified over a determinized program. This allows for the path quantification
present within a CTL⇤ formula, that is, whether all paths (or some paths) starting
from a state satisfy a path formula. When a CTL⇤ formula of the form ✓ ::= A |
E is reached after acquiring a set of states satisfying  , ✓ is verified on the
same determinized program used for  . We then must use quantifier elimination
to acquire the proper set of states that satisfy ✓, thus quantifying the assertions
over the values of the prophecy variables. If the formula is of the form A ,
we universally quantify the prophecy variables appearing in the set of states
that satisfy A . If the formula is of the form E , we existentially quantify the
prophecy variables.

Example. Consider the program in Fig. 1(a) and the property EFG x = 1 stating
that there exists a possible future where x = 1 will eventually become true and
stay true. This is a system stabilization property which can only be expressed
in CTL⇤. We begin by identifying that G x = 1 is a path formula, and thus use
Approximate to return the over-approximated state formula AG x = 1. We
then initiate a CTL model checking task where we seek a set of states aG such
that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are
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infinite branching possibilities of leaving ⇢2 to possibly reaching ⇢3 or remaining
in ⇢2 forever. In order to reason about the original sub-formula G x = 1, we
must be observing sets of paths, not states. Given that we over-approximated our
formula in a way that allows us to only reason about states, we thus symbolically
determinize the program to simultaneously simulate all possible related paths
through the control flow graph and try to separate them to originate from distinct
states in the program.
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aG = (l1 ∧ nL1 < 0).
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EFaG is a readily acceptable CTL formula.

E exists within a larger context reasoning about paths (inner formula FG). 

To interchange between path and state formulae, we collapse determinized 
relations to incorporate path quantifiers via QE.  
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Verify EFaG over the same determinized program above.

Precondition (l1 ∧ nL1 < 0) is returned (again). 

Use QE to existentially quantify out introduced prophecy 
variables.
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that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are
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Existential quantification corresponds to searching for some 
path (or paths) that satisfy the path formula. 

EFG x = 1 holds.
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VERIFYING CTL*

1. Approximate: Over-approximate a path sub-formula to a 
universal CTL formula (ACTL).

2. Determinize: Nondeterministic decisions regarding which 
paths are taken are determined by prophecy variables.

3. Precondition Synthesis: Through an existing CTL model-
checker. 

4. Quantifier Elimination: Allow path formulae preconditions 
to admit a sound interaction with state formulae.
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the over-approximation of path formulae by a corresponding ACTL formulae, as
although this over-approximation is checked over P

D

, P
D

does not determinize
all paths. It is impossible to completely determinize a program as this requires
uncountable branching (in the choice of prophecy variables). Countable nonde-
terminism is not a su�cient technique in the context of nondeterministic nested
determinization of programs. For example, suppose that the prophecy variable
value entails that an external loop does not terminate. Now consider all possible
options for number of repetitions of the internal loop. In order to have a com-
pletely deterministic program, we must prophesize an infinite sequence of finite
natural numbers. The number of such possible infinite sequences is uncountable.

5 Evaluation

Program LoC Property Time(s) Res.

OS frag. 1 393 AG((EG(phi io compl  0)) _ (EFG(phi nSUC ret > 0)))) 32.0 ⇥
OS frag. 1 393 EF((AF(phi io compl > 0)) ^ (AGF(phi nSUC ret  0)))) 13.2 X
OS frag. 2 380 EFG((keA  0 ^ (AG keR = 0))) 28.3 X
OS frag. 2 380 EFG((keA  0 _ (EF keR = 1))) 16.5 X
OS frag. 3 50 EF(PPBlockInits > 0 ^ (((EFG IoCreateDevice = 0) 10.4 X

_ (AGF status = 1)) ^ (EG PPBunlockInits  0)))

PgSQL arch 1 106 EFG(tt > 0 _ (AF wakend = 0)) 1.5 ⇥
PgSQL arch 1 106 AGF(tt  0 ^ (EG wakend 6= 0)) 3.8 X
PgSQL arch 1 106 EFG(wakend = 1 ^ (EGF wakend = 0)) 18.3 X
PgSQL arch 1 106 EGF(AG wakend = 1) 10.3 X
PgSQL arch 1 106 AFG(EF wakend = 0) 1.5 ⇥
PgSQL arch 2 100 AGF wakend = 1 1.4 X
PgSQL arch 2 100 EFG wakend = 0 0.5 ⇥
Bench 1 12 EFG(x = 1 ^ (EG y = 0)) 1.0 X
Bench 2 12 EGF x > 0 0.1 X
Bench 3 12 AFG x = 1 0.1 X
Bench 4 10 AG((EFG y = 1) ^ (EF x � t)) 0.5 ⇥
Bench 5 10 AG(x = 0 U b = 0) T/O –

Bench 6 8 AG((EFG x = 0) ^ (EF x = 20)) 0.1 X
Bench 7 6 (EFGx = 0) ^ (EFGy = 1) 0.5 ⇥
Bench 8 6 AG((AFG x = 0) _ (AFGx = 1)) 0.5 X

Fig. 4: Experimental evaluations of infinite-state programs drawn from the Windows
OS, PgSQL, and 8 toy examples. There are no competing tools available for comparison.

In this section we discuss the results of our experiments with an implemen-
tation of the procedure from Fig. 2(c). Our implementation2 is built as an ex-
tension to the open source project T2, which uses a safety prover similar to
Impact [23] alongside previously published techniques for discovering ranking
functions, etc. [24, 8] to prove both liveness and safety properties. The tool was

2 The source-code of our implementation and our benchmarks are available under the
MIT open-source license at https://github.com/hkhlaaf/T2/tree/T2Star.
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RECAP

The first known method for symbolically and automatically 
proving CTL* properties of (infinite-state) integer programs. 

Solution based on program transformation which trades 
nondeterminism in the transition relation for nondeterminism 
explicit in prophecy variables.

Implemented as an extension to T2:  
 https://github.com/hkhlaaf/T2/tree/T2Star
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