ON AUTOMATION OF CTL* VERIFICATION FOR
INFINITE-STATE SYSTEMS

| | 2
Heidy Khlaaf Byron Cook Nir Prterman

|
University College Londgn
University of Leicester

D CTL*VERIFICATION

AUTOMAT

o First known tool for automatically proving CTL* properties of
infinrte-state programs.

» Solution based precondition synthesis over prophecy
variables which determine nondeterministic decisions

regarding which paths are taken.

» Prophecies: Variables that summarize the future of the
pDrogram execution.,

TEMPORAL LOGIC

» Logic reasoning about propositions qualified in
terms of time.

» Used as a specification language as it encompasses

safety, liveness, fairness, etc.

o Most commonly used sub-logics are CTL*, CTL
(state based), and LTL (trace based).

CTLVS LTL

(3, (59 (s (8) (59 [(s) CTL
@@@@@@@@@@@@

LTL

CTL*

CTL

» Reasoning about sets of states.

» Reasoning about non-deterministic (branching) programs.

c QX[TR|PAQ[PVO|AXQ[AFQ [A[@WQ] | EX® |
cG@ | E[pUp]

o A @ —All: @ has to hold on all paths starting from all initial states.

o E @ — Exists: there exists at least one path starting from all inrtial
states where (p holds.

CTL

o X (p — Next: ¢p has to hold at the next state.
o G — Globally: ¢ has to hold on the all states along a path.
o F — Finally: @ eventually has to hold.

o (| U @y —Until: | has to hold at least until at some
position P holds. (P, must be verified In the future.

o (P W 2 —Weak until: @ has to hold until ¢p2 holds.

7

LIL

» Reasoning about sets of paths.

o Reasoning about concurrent programs.

c Y=o [WA [YV [GY [Y | [QWYT | [WUY] .

CTL*

o CTL" can express both CTL, LTL, and properties requiring
path and state based interplay.

c P || PAD|PVIIAY|EY
* =@ [WAY WY Y[GY [FP | [YWY] | [WUY]

CTL*

o TL: Can naturally express fairness: GF p = GF g.

o TL: Can express existential properties.
o TL* allows the interplay between LTL and CTL properties:

o "Along some future an event occurs infinrtely often” (EGF)
o EFG(x A (EGF X))

JAG(EG —x) v (EFG v)

VERIFYING CTL* (OVERVIEW)

sRecurse over a CTL" formula, and for each sub-formula ©
produce a satistying precondition.

sDeconstruction allows us to identify the interplay of path
and state formulae.

o State formulae precondritions acquired via existing CTL
techniques.

How to acquire sufficient path formulae preconditions
that admit a sound interaction with state formulae?

VERIFYING CTL* (OVERVIEW)

|. Formula: Over-approximate a path sub-formula to a
universal CTL formula (ACTL).

2. TS: Nondeterministic decisions regarding which paths are
taken are determined by prophecy variables.

3. Use an existing CTL model-checker.

4. Apply QE over prophecies to acquire sound precondition.

- XAMPL

plzx =1

/ ' =0

QCIZ—CIZ

» Prove the CTL" property EFG x = I,

APPROXIMAT

p1:x =1

=~ rz’ =0
0n) @
ps: 7 =

/
p2 - X =X

o Prove the CTL* sub-property G x = 1.
o Over-approximate to AG x = |.

o No set of states exemplify the infinite possibilities of leaving
P2 to possibly reaching p3 or remaining in P, forever.

|4

DETERMINIZ

» (Construct a partially determinized program over relation pairs.

o [ransitions stemming from same location, but are not part of
the same strongly connected subgraph.

o We identity (p2, P3) as a relation parr.

- [ERMINIZ

p1:7 =1 p3 :neg =0

i ' =0
61\ >@
,04Z£U/=£C
p2 : ney # 0
nfql:ngl—l
x =z

ntroduce prophecy variable (n.|) associated with the relation

balr (P2, P3).

» Used to make predictions about the path taken.

DETERMINIZ

. /_ - Ny =3
,01.33— 1
=0
,04Z£U/=£IZ‘
’n,glyé()
nel—ngl—l
x =z

o A positive number chosen predicts the number of instances that
transition Py is visited before transitioning to ps.

o We remain in p until np; = 0, with n.| being decremented each time.

» A negative assignment to ni| denotes remaining in P, forever, or non-

termination.
| /

PRECONDITION SYNTHESIS

p1:7 =1 p3 :neg =0

i ' =0
61\ >@
,04Z£U/=£IZ‘
p2 : ney # 0
ny, =mng — 1
T =z

» We can now use an existing CTL model-checker!
» Returns an assertion characterizing the states in which AG x = 1.

o ac = (li A nL < 0) Is returned.

PRECONDITION SYNTHESIS

p1:7 =1 p3 :neg =0

i ' =0
61\ >@
,04Z£U/:£E
p2 : ney # 0
nfql:ngl—l
x =z

o ac= (i Anu <0).

» Replace the sub-formula with its assertion in the original
CTL* formula: EFac

QUANTIFIER ELIMINATION

/_ s Ny :O
P1 r =1 1
' =0
,04Z£U/=£IZ‘
’n,glyé()
nel—ngl—l
x =z

o EFac Is a readily acceptable CTL formula.
o E exists within a larger context reasoning about paths (inner formula FG).

» o Interchange between path and state formulae, we collapse determinized
relations to incorporate path quantifiers via QE.

20

QUANTIFIER ELIMINATION

p1:7 =1 p3 :neg =0

i ' =0
61\ >@
,04Z£U/=£IZ‘
p2 : ney # 0
ny, =mng — 1
T =z

o Verify EFac over the same determinized program above.
o Precondition (Ii A n.p < 0) Is returned (again).
o Use QE to existentially gquantify out introduced prophecy

variables.
2|

QUANTIFIER ELIMINATION

p1:7 =1 p3 :neg =0

i ' =0
61\ >@
,04Z£U/=£IZ‘
p2 : ney # 0
ny, =mng — 1
T =z

o Existential quantification corresponds to searching for some
bath (or paths) that satisty the path formula.

o EFG x = | holds.

22

VERIFYING CTL*

|. Approximate: Over-approximate a path sub-formula to a
universal CTL formula (ACTL).

2. Determinize: Nondeterministic decisions regarding which
paths are taken are determined by prophecy variables.

3. Precondition Synthesis: [hrough an existing CTL model-
checker.

4. Quantifier Elimination: Allow path formulae preconditions
to admit a sound Iinteraction with state formulae.

23

- XP

-RIME

NTS

Program LoC|Property Time(s)|Res.
OS frag. 1 393|AG((EG(phi-io_compl < 0)) V (EFG(phi_nSUC_ret > 0))))|32.0 X
OS frag. 1 393 |EF((AF(phi_io_compl > 0)) A (AGF(phinSUC_ret < 0))))|13.2 v
OS frag. 2 380|EFG((keA < O A (AG keR = 0))) 28.3 v
OS frag. 2 380|EFG((keA < 0V (EF keR = 1))) 16.5 v
OS frag. 3 50|EF(PPBlockInits > 0 A (((EFG IoCreateDevice = 0) 10.4 v
V (AGF status = 1)) A (EG PPBunlockInits < 0)))
PgSQL arch 1| 106|EFG(tt > 0 V (AF wakend = 0)) 1.5 X
PgSQL arch 1| 106|AGF(tt < 0 A (EG wakend # 0)) 3.8 v
PgSQL arch 1| 106|EFG(wakend = 1 A (EGF wakend = 0)) 18.3 v
PgSQL arch 1| 106|EGF(AG wakend = 1) 10.3 v
PgSQL arch 1| 106|AFG(EF wakend = 0) 1.5 X
PgSQL arch 2| 100{AGF wakend = 1 1.4 v
PgSQL arch 2| 100(EFG wakend = 0 0.5 X
Bench 1 12|EFG(x=1A (EGy = 0)) 1.0 v
Bench 2 12|EGF x > 0 0.1 v
Bench 3 12|AFGx =1 0.1 v
Bench 4 10|AG((EFGy =1) A (EF x > t)) 0.5 X
Bench 5 10|AG(x =0 U b =0) T/0 -
Bench 6 8|AG((EFG x = 0) A (EF x = 20)) 0.1 v
Bench 7 6|(EFGx = 0) A (EFGy = 1) 0.5 X
Bench 8 6|AG((AFGx =0) vV (AFGx = 1)) 0.5 v

24

RECAP

o [he first known method for symbolically and automatically
proving CTL* properties of (infinite-state) integer programs.

o Solution based on program transformation which trades
nondeterminism In the transition relation for nondeterminism
explicit In prophecy variables.

» |mplemented as an extension to T2:
https://github.com/hkhlaal/ T 2/tree/T25tar

25

https://github.com/hkhlaaf/T2/tree/T2Star

Eleventh Haifa Verification Conference

HVC2015

November 17 - 19 Haifa, Israel

Submission deadline: July 24, 2015

26

