ON AUTOMATION OF CTL* VERIFICATION FOR INFINITE-STATE SYSTEMS

Heidy Khlaaf Byron Cook Nir Piterman²

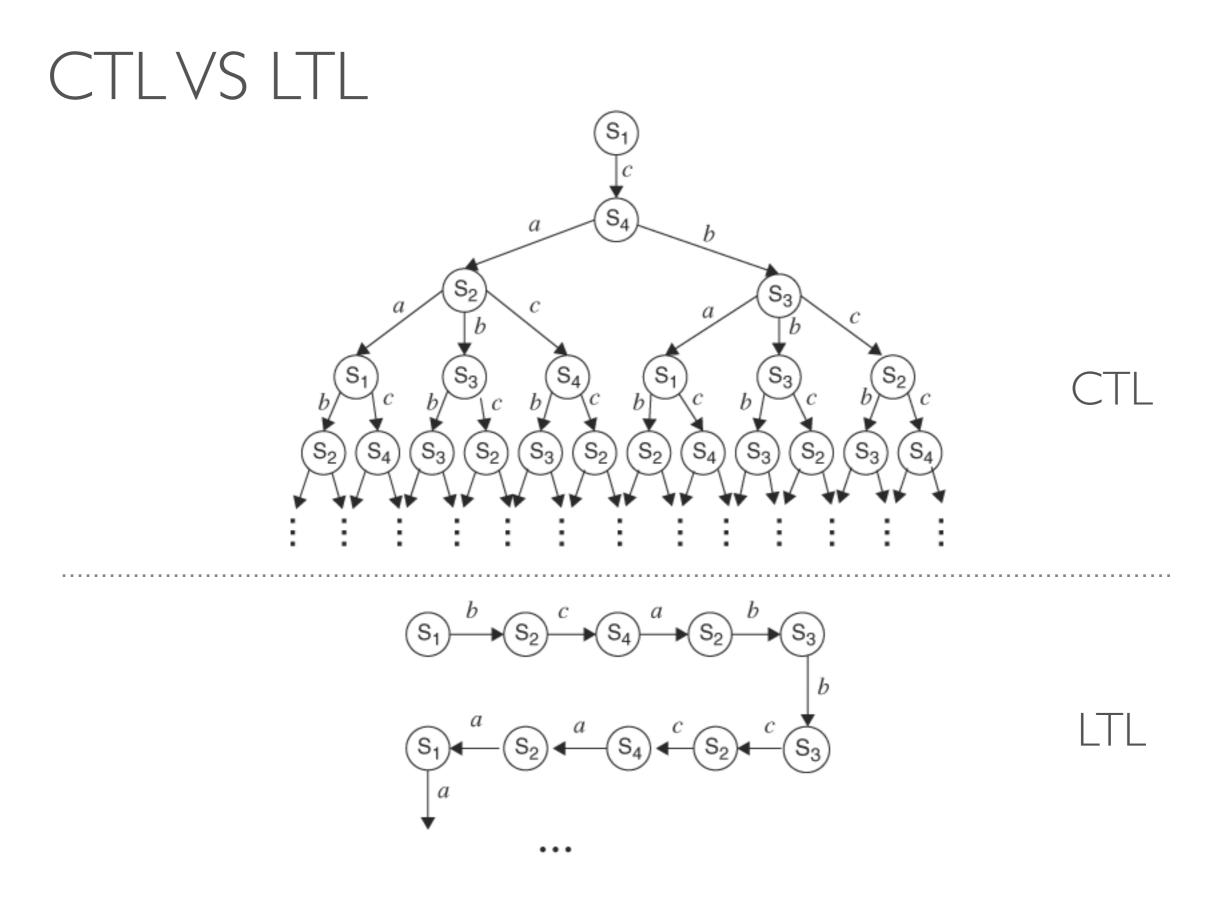
University College London University of Leicester

AUTOMATED CTL*VERIFICATION

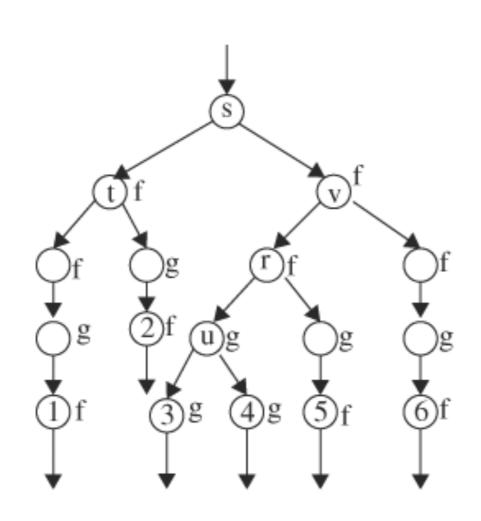
- First known tool for *automatically* proving CTL* properties of infinite-state programs.
- Solution based precondition synthesis over prophecy variables which determine nondeterministic decisions regarding which paths are taken.
 - Prophecies: Variables that summarize the future of the program execution.

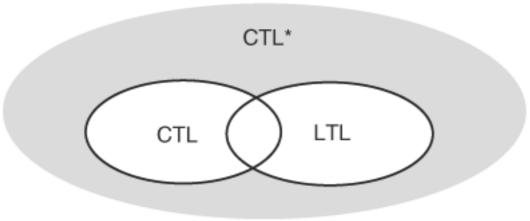
TEMPORAL LOGIC

- Logic reasoning about propositions qualified in terms of time.
- Used as a specification language as it encompasses safety, liveness, fairness, etc.
- Most commonly used sub-logics are CTL*, CTL (state based), and LTL (trace based).



CTL*





- Reasoning about sets of states.
- Reasoning about non-deterministic (branching) programs.
- $\boldsymbol{\phi} ::= \boldsymbol{\alpha} \mid \neg \boldsymbol{\alpha} \mid \boldsymbol{\phi} \land \boldsymbol{\phi} \mid \boldsymbol{\phi} \lor \boldsymbol{\phi} \mid A X \boldsymbol{\phi} \mid A F \boldsymbol{\phi} \mid A [\boldsymbol{\phi} \lor \boldsymbol{\phi}] \mid E X \boldsymbol{\phi} \mid E G \boldsymbol{\phi} \mid E [\boldsymbol{\phi} \cup \boldsymbol{\phi}]$
- A ϕ All: ϕ has to hold on all paths starting from all initial states.
- E ϕ Exists: there exists at least one path starting from all initial states where ϕ holds.

CTL

- X ϕ Next: ϕ has to hold at the next state.
- G ϕ Globally: ϕ has to hold on the all states along a path.
- F ϕ Finally: ϕ eventually has to hold.
- $\phi_1 \cup \phi_2 \text{Until}; \phi_1$ has to hold at least until at some position ϕ_2 holds. ϕ_2 must be verified in the future.
- $\phi_1 W \phi_2$ Weak until: ϕ_1 has to hold until ϕ_2 holds.

• $\psi ::= \alpha | \psi \land \psi | \psi \lor \psi | G\psi | F\psi | [\psi \lor \psi] | [\psi \cup \psi].$

• Reasoning about sets of paths.

Reasoning about concurrent programs.

CTL*

- CTL* can express both CTL, LTL, and properties requiring path and state based interplay.
- $\phi ::= \alpha | \neg \alpha | \phi \land \phi | \phi \lor \phi | \land \psi | \exists \psi$
- $\psi ::= \phi | \psi \land \psi | \psi \lor \psi | G\psi | F\psi | [\psi \lor \psi] | [\psi \cup \psi]$

- •LTL: Can naturally express fairness: GF $p \Rightarrow$ GF q.
- •CTL: Can express existential properties.
- •CTL* allows the interplay between LTL and CTL properties:
 - "Along some future an event occurs infinitely often" (EGF)
 - $EFG(\neg x \land (EGF x))$
 - •AG(EG $\neg x$) v (EFG y)

VERIFYING CTL* (OVERVIEW)

•Recurse over a CTL* formula, and for each sub-formula θ produce a satisfying precondition.

•Deconstruction allows us to identify the interplay of path and state formulae.

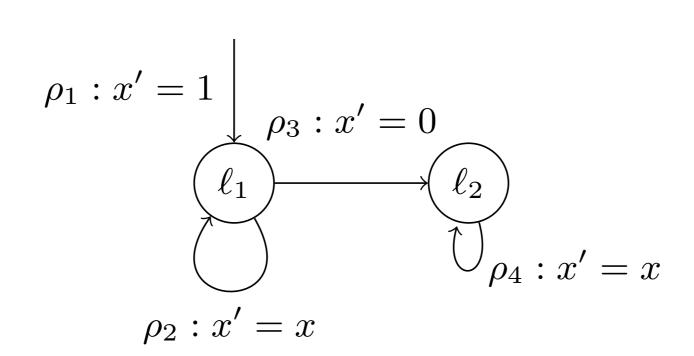
• State formulae preconditions acquired via existing CTL techniques.

•How to acquire sufficient path formulae preconditions that admit a sound interaction with state formulae?

VERIFYING CTL* (OVERVIEW)

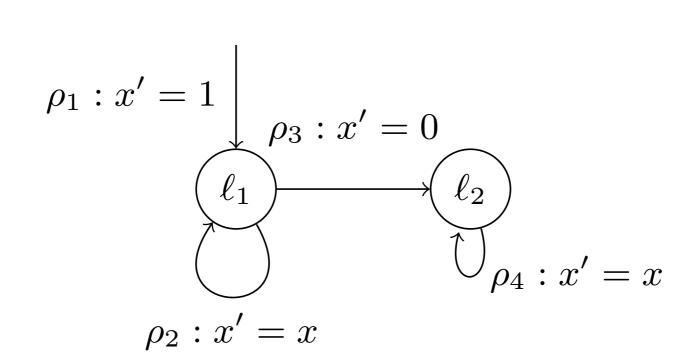
- I. Formula: Over-approximate a path sub-formula to a universal CTL formula (ACTL).
- 2. **TS:** Nondeterministic decisions regarding which paths are taken are determined by prophecy variables.
- 3. Use an existing CTL model-checker.
- 4. Apply QE over prophecies to acquire sound precondition.

EXAMPLE



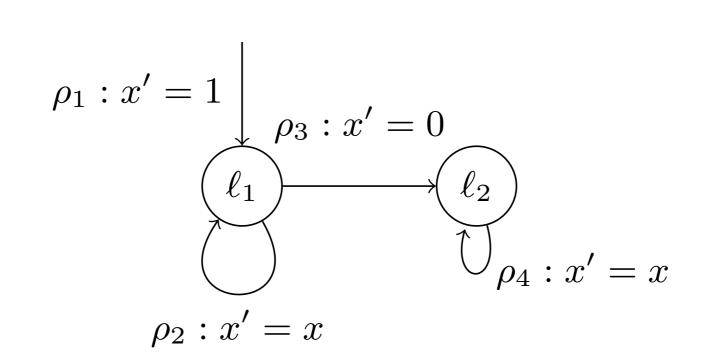
• Prove the CTL* property EFG x = 1.

APPROXIMATE



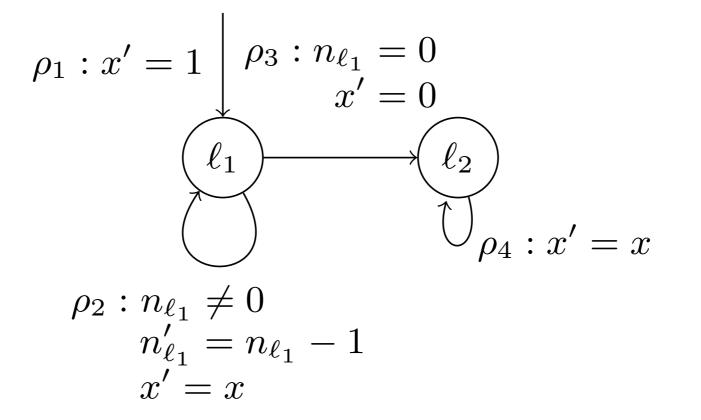
- Prove the CTL* sub-property $G \times = I$.
 - Over-approximate to $AG \times = I$.
 - No set of states exemplify the infinite possibilities of leaving ρ_2 to possibly reaching ρ_3 or remaining in ρ_2 forever.

DETERMINIZE



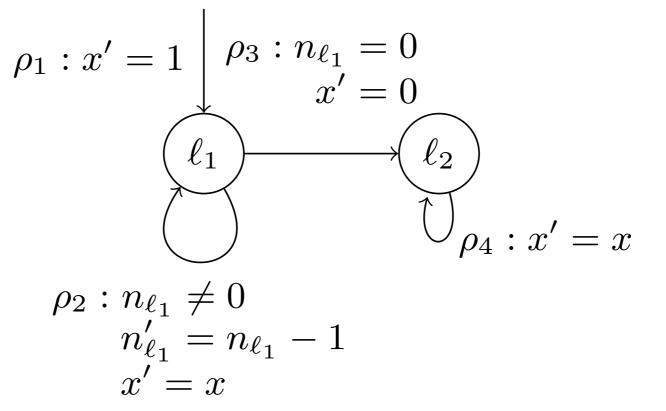
- Construct a *partially* determinized program over **relation pairs**.
 - Transitions stemming from same location, but are not part of the same strongly connected subgraph.
 - We identify (ρ_2, ρ_3) as a relation pair.

DETERMINIZE



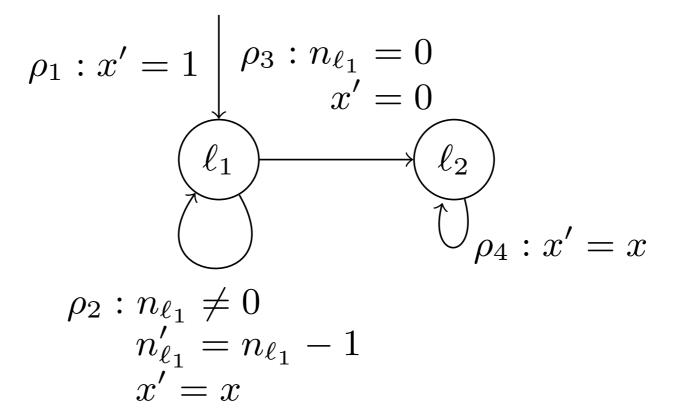
- Introduce prophecy variable (n_{L1}) associated with the relation pair (ρ_2, ρ_3) .
 - Used to make predictions about the path taken.

DETERMINIZE



- A positive number chosen predicts the number of instances that transition ρ_2 is visited before transitioning to ρ_3 .
 - We remain in ρ_2 until $n_{L1} = 0$, with n_{L1} being decremented each time.
- A negative assignment to n_{L1} denotes remaining in ρ_2 forever, or non-termination.

PRECONDITION SYNTHESIS



- We can now use an existing CTL model-checker!
- Returns an assertion characterizing the states in which AG x = 1.
- $a_G = (I_I \land n_{LI} < 0)$ is returned.

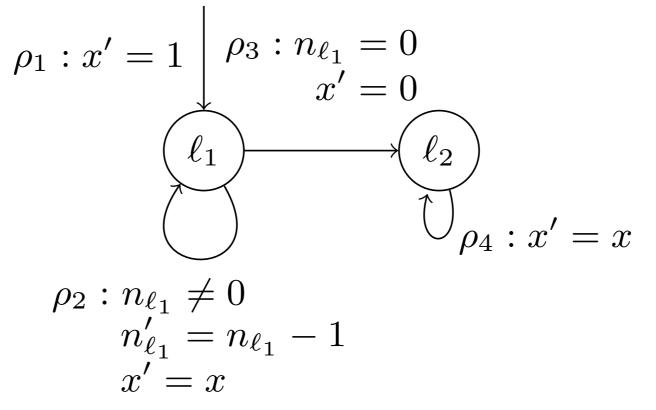
PRECONDITION SYNTHESIS

$$\rho_{1}: x' = 1 \qquad \begin{array}{c} \rho_{3}: n_{\ell_{1}} = 0 \\ x' = 0 \\ \hline \\ \rho_{4}: x' = x \end{array}$$

$$\rho_{2}: n_{\ell_{1}} \neq 0 \\ n'_{\ell_{1}} = n_{\ell_{1}} - 1 \\ x' = x \end{array}$$
• a_{G} = (|| \land n_{L|} < 0).

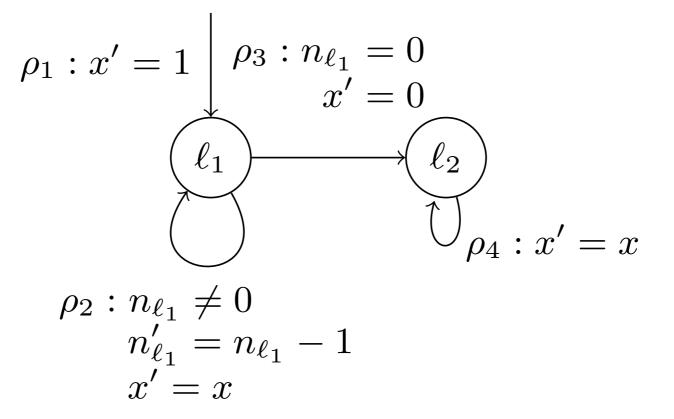
 Replace the sub-formula with its assertion in the original CTL* formula: EFaG.

QUANTIFIER ELIMINATION



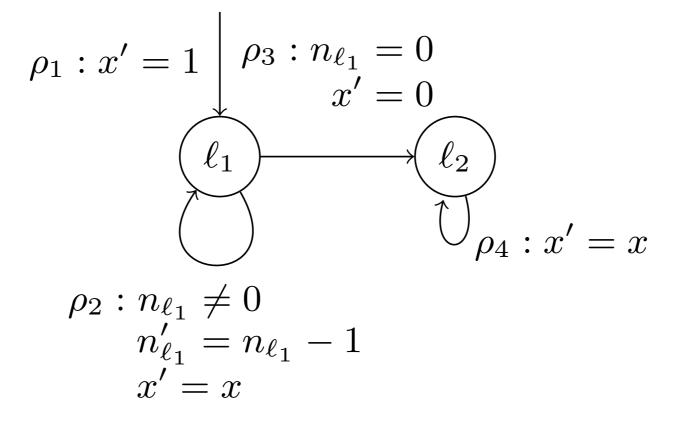
- EFaG is a readily acceptable CTL formula.
- E exists within a larger context reasoning about paths (inner formula FG).
- To interchange between path and state formulae, we collapse determinized relations to incorporate path quantifiers via **QE**.

QUANTIFIER ELIMINATION



- Verify EFa_G over the same determinized program above.
- Precondition $(I_1 \land n_{L1} < 0)$ is returned (again).
- Use QE to existentially quantify out introduced prophecy variables.

QUANTIFIER ELIMINATION



- Existential quantification corresponds to searching for some path (or paths) that satisfy the path formula.
- $EFG \times = 1$ holds.

VERIFYING CTL*

- I. **Approximate:** Over-approximate a path sub-formula to a universal CTL formula (ACTL).
- 2. **Determinize:** Nondeterministic decisions regarding which paths are taken are determined by prophecy variables.
- 3. **Precondition Synthesis:** Through an existing CTL modelchecker.
- 4. **Quantifier Elimination:** Allow path formulae preconditions to admit a sound interaction with state formulae.

EXPERIMENTS

Program	LoC	Property	Time(s)	Res.
OS frag. 1	393	$AG((EG(\texttt{phi_io_compl} \le 0)) \lor (EFG(\texttt{phi_nSUC_ret} > 0))))$	32.0	×
OS frag. 1	393	$EF((AF(\texttt{phi_io_compl} > 0)) \land (AGF(\texttt{phi_nSUC_ret} \le 0))))$	13.2	\checkmark
OS frag. 2	380	$EFG((\texttt{keA} \leq 0 \land (AG \; \texttt{keR} = 0)))$	28.3	\checkmark
OS frag. 2	380	$EFG((\texttt{keA} \leq 0 \lor (EF \; \texttt{keR} = 1)))$	16.5	\checkmark
OS frag. 3	50	$EF(\mathtt{PPBlockInits} > 0 \land (((\mathtt{EFG IoCreateDevice} = 0)$	10.4	\checkmark
		$\lor (AGF \ status = 1)) \land (EG \ PPBunlockInits \leq 0)))$		
PgSQL arch 1	106	$EFG(\mathtt{tt} > 0 \lor (AF \texttt{ wakend} = 0))$	1.5	×
PgSQL arch 1	106	$AGF(\mathtt{tt} \leq 0 \land (EG wakend \neq 0))$	3.8	\checkmark
PgSQL arch 1	106	$EFG(\mathtt{wakend} = 1 \land (EGF \mathtt{wakend} = 0))$	18.3	\checkmark
PgSQL arch 1	106	$EGF(AG \ \mathtt{wakend} = 1)$	10.3	\checkmark
PgSQL arch 1	106	$AFG(EF \ \mathtt{wakend} = 0)$	1.5	×
PgSQL arch 2	100	$AGF \ \mathtt{wakend} = 1$	1.4	\checkmark
PgSQL arch 2	100	$EFG \ \mathtt{wakend} = 0$	0.5	×
Bench 1	12	$EFG(\mathtt{x} = 1 \land (EG \ \mathtt{y} = 0))$	1.0	\checkmark
Bench 2	12	$EGF \ \mathtt{x} > 0$	0.1	\checkmark
Bench 3	12	AFG $x = 1$	0.1	\checkmark
Bench 4	10	$AG((EFG\ \mathtt{y}=1)\land(EF\ \mathtt{x}\geq\mathtt{t}))$	0.5	×
Bench 5	10	$AG(\mathtt{x}=0 \ U \ \mathtt{b}=0)$	T/O	_
Bench 6	8	$AG((EFG \ \mathtt{x} = 0) \land (EF \ \mathtt{x} = 20))$	0.1	\checkmark
Bench 7	6	$(EFGx=0) \land (EFGy=1)$	0.5	×
Bench 8	6	$AG((AFG \ \mathtt{x} = 0) \lor (AFG \mathtt{x} = 1))$	0.5	\checkmark

RECAP

- The first known method for symbolically and automatically proving CTL* properties of (infinite-state) integer programs.
- Solution based on program transformation which trades nondeterminism in the transition relation for nondeterminism explicit in prophecy variables.
- Implemented as an extension to **T2:** <u>https://github.com/hkhlaaf/T2/tree/T2Star</u>

