
FASTER TEMPORAL REASONING FOR INFINITE-STATE	

PROGRAMS

Heidy Khlaaf1 Byron Cook1,2 	

 	

 Nir Piterman3	

!
!

1University College London
2Microsoft Research	

3University of Leicester

1

BRIEF OVERVIEW

A new symbolic model checking procedure for CTL verification of
infinite-state programs.	

Counterexample-guided precondition synthesis strategy to compute
location(PC) specific preconditions.	

Existing tools not scalable. We propose:	

Compositional strategy via exploiting the natural decomposition of
the program’s state space.	

Performance improvement and scalability!

2

CTL - A REFRESHER

Temporal logic reasoning about sets of states.	

Implemented via formula structure.	

Reasoning about non-deterministic (branching) programs. 	

Termination - AFAX false, Non-Termination - EGEX true, AG - Safety	

These operators can be nested to generate complex liveness and
safety properties.	

Used to uncover bugs in device drivers, operating systems, servers, etc.
3

A φ – All: φ has to hold on all paths starting from all initial states.	

E φ – Exists: there exists at least one path starting from all initial
states where φ holds.	

G φ – Globally: φ has to hold on the all states along a path.	

F φ – Finally: φ eventually has to hold.	

Other operators include X φ – Next, φ1 U φ2 – Until, φ1 W φ2
– Weak until.

4

CTL - A REFRESHER

Verify EF y > z

5

INTUITION

`1 `2 `3

⌧1 : y0 = 0
x

0 = 10

⌧2 : y  x

y

0 = y + 1

⌧3 : z0 = x

⌧4 : y > z

y

0 = 0

⌧5 : x > 0
x

0 = x� 1

Fig. 4. Reducing a transition system with the fair CTL property AG(x = 0 ! AF(x =
1)) and the fairness constraint GF ⌧2 ! GF m > 0. The original transition system is
represented in (a), followed by the application of our fairness reduction in (b).

cannot decrease infinitely often, thus enforcing the eventual invalidation of the
transition p ^ n

0
< n. Therefore, R⌦ would only allow a transition to proceed if

q holds or ¬p ^ n

0  n holds. That is, either q occurs infinitely often or p will
occur finitely often. Note that a q-transition imposes no constraints on n

0, which
e↵ectively resets n0 to an arbitrary value.

The conversion of M with fairness constraint ⌦ to Fair(M,⌦) involves the
truncation of paths due to the wrong estimation of the number of p-s until q.
This means that Fair(M,⌦) can include (maximal) finite paths that are prefixes
of unfair infinite paths. It follows that when model checking CTL we have to
ensure that these paths do not interfere with the validity of our model checking
procedure. Hence, we have to distinguish between maximal (finite) paths that
occur inM and those introduced by our reduction. This is done through adding a
proposition t to mark all original “valid” termination states prior to the reduction
in Fig. 3, followed by adjusting the CTL specification through a transformation,
all presented in Section 3.3. We first provide high-level understanding of our
approach through an example.

3.1 Illustrative Example

Consider the example in Fig. 4 for the fair CTL property AG(x = 0 ! AF(x =
1)) and the fairness constraint GF ⌧

2

! GF m > 0 for the initial transition
system introduced in (a). We demonstrate the resulting transformation for this
infinite-state program, which allows us to reduce fair model checking to model
checking. By applying Fair(M,⌦) from Fig. 3, we obtain (b) where each original
transition, ⌧

2

, ⌧

3

, and ⌧

4

, are adjoined with restrictions such that {(¬⌧
2

^ n

0 
n) _ (⌧

2

^ n

0
< n) _m > 0 } ^ n � 0 holds. That is, we wish to restrict our

transition relations such that if ⌧
2

is visited infinitely often, then the variable m

must be positive infinitely often. In ⌧

2

, the unconstrained variable m indicates
that the variable m is being assigned to a nondeterministic value, thus with
every iteration of the loop, m acquires a new value. In the original transition
system, ⌧

2

can be taken infinitely often given said non-determinism, however in
(b), such a case is not possible. The transition ⌧

2

in (b) now requires that n

be decreased on every iteration. Since n 2 N, n cannot be decreased infinitely
often, causing the eventual restriction to the transition ⌧

2

. Such an incidence
is categorized as a finite path that is a prefix of some unfair infinite paths. As

6

The set of states satisfying EF y > z before a program
command is very often the same as the set of states
respecting EF y > z after the command.

6

INTUITION

`1 `2 `3

⌧1 : y0 = 0
x

0 = 10

⌧2 : y  x

y

0 = y + 1

⌧3 : z0 = x

⌧4 : y > z

y

0 = 0

⌧5 : x > 0
x

0 = x� 1

Fig. 4. Reducing a transition system with the fair CTL property AG(x = 0 ! AF(x =
1)) and the fairness constraint GF ⌧2 ! GF m > 0. The original transition system is
represented in (a), followed by the application of our fairness reduction in (b).

cannot decrease infinitely often, thus enforcing the eventual invalidation of the
transition p ^ n

0
< n. Therefore, R⌦ would only allow a transition to proceed if

q holds or ¬p ^ n

0  n holds. That is, either q occurs infinitely often or p will
occur finitely often. Note that a q-transition imposes no constraints on n

0, which
e↵ectively resets n0 to an arbitrary value.

The conversion of M with fairness constraint ⌦ to Fair(M,⌦) involves the
truncation of paths due to the wrong estimation of the number of p-s until q.
This means that Fair(M,⌦) can include (maximal) finite paths that are prefixes
of unfair infinite paths. It follows that when model checking CTL we have to
ensure that these paths do not interfere with the validity of our model checking
procedure. Hence, we have to distinguish between maximal (finite) paths that
occur inM and those introduced by our reduction. This is done through adding a
proposition t to mark all original “valid” termination states prior to the reduction
in Fig. 3, followed by adjusting the CTL specification through a transformation,
all presented in Section 3.3. We first provide high-level understanding of our
approach through an example.

3.1 Illustrative Example

Consider the example in Fig. 4 for the fair CTL property AG(x = 0 ! AF(x =
1)) and the fairness constraint GF ⌧

2

! GF m > 0 for the initial transition
system introduced in (a). We demonstrate the resulting transformation for this
infinite-state program, which allows us to reduce fair model checking to model
checking. By applying Fair(M,⌦) from Fig. 3, we obtain (b) where each original
transition, ⌧

2

, ⌧

3

, and ⌧

4

, are adjoined with restrictions such that {(¬⌧
2

^ n

0 
n) _ (⌧

2

^ n

0
< n) _m > 0 } ^ n � 0 holds. That is, we wish to restrict our

transition relations such that if ⌧
2

is visited infinitely often, then the variable m

must be positive infinitely often. In ⌧

2

, the unconstrained variable m indicates
that the variable m is being assigned to a nondeterministic value, thus with
every iteration of the loop, m acquires a new value. In the original transition
system, ⌧

2

can be taken infinitely often given said non-determinism, however in
(b), such a case is not possible. The transition ⌧

2

in (b) now requires that n

be decreased on every iteration. Since n 2 N, n cannot be decreased infinitely
often, causing the eventual restriction to the transition ⌧

2

. Such an incidence
is categorized as a finite path that is a prefix of some unfair infinite paths. As

6

We can infer whether a command is likely to affect the truth of
EF y > z.	

From one counterexample, we use precondition synthesis to
infer the pre-image of all locations within a counterexample.

7

INTUITION

`1 `2 `3

⌧1 : y0 = 0
x

0 = 10

⌧2 : y  x

y

0 = y + 1

⌧3 : z0 = x

⌧4 : y > z

y

0 = 0

⌧5 : x > 0
x

0 = x� 1

Fig. 4. Reducing a transition system with the fair CTL property AG(x = 0 ! AF(x =
1)) and the fairness constraint GF ⌧2 ! GF m > 0. The original transition system is
represented in (a), followed by the application of our fairness reduction in (b).

cannot decrease infinitely often, thus enforcing the eventual invalidation of the
transition p ^ n

0
< n. Therefore, R⌦ would only allow a transition to proceed if

q holds or ¬p ^ n

0  n holds. That is, either q occurs infinitely often or p will
occur finitely often. Note that a q-transition imposes no constraints on n

0, which
e↵ectively resets n0 to an arbitrary value.

The conversion of M with fairness constraint ⌦ to Fair(M,⌦) involves the
truncation of paths due to the wrong estimation of the number of p-s until q.
This means that Fair(M,⌦) can include (maximal) finite paths that are prefixes
of unfair infinite paths. It follows that when model checking CTL we have to
ensure that these paths do not interfere with the validity of our model checking
procedure. Hence, we have to distinguish between maximal (finite) paths that
occur inM and those introduced by our reduction. This is done through adding a
proposition t to mark all original “valid” termination states prior to the reduction
in Fig. 3, followed by adjusting the CTL specification through a transformation,
all presented in Section 3.3. We first provide high-level understanding of our
approach through an example.

3.1 Illustrative Example

Consider the example in Fig. 4 for the fair CTL property AG(x = 0 ! AF(x =
1)) and the fairness constraint GF ⌧

2

! GF m > 0 for the initial transition
system introduced in (a). We demonstrate the resulting transformation for this
infinite-state program, which allows us to reduce fair model checking to model
checking. By applying Fair(M,⌦) from Fig. 3, we obtain (b) where each original
transition, ⌧

2

, ⌧

3

, and ⌧

4

, are adjoined with restrictions such that {(¬⌧
2

^ n

0 
n) _ (⌧

2

^ n

0
< n) _m > 0 } ^ n � 0 holds. That is, we wish to restrict our

transition relations such that if ⌧
2

is visited infinitely often, then the variable m

must be positive infinitely often. In ⌧

2

, the unconstrained variable m indicates
that the variable m is being assigned to a nondeterministic value, thus with
every iteration of the loop, m acquires a new value. In the original transition
system, ⌧

2

can be taken infinitely often given said non-determinism, however in
(b), such a case is not possible. The transition ⌧

2

in (b) now requires that n

be decreased on every iteration. Since n 2 N, n cannot be decreased infinitely
often, causing the eventual restriction to the transition ⌧

2

. Such an incidence
is categorized as a finite path that is a prefix of some unfair infinite paths. As

6

Prove the CTL property AGEF y = 1.

8

EXAMPLE (PT. 1)

where either '1 or '2 does not hold. A counter example for
disjunction '1 _ '2 is a state where both sub-formulas do
not hold. A counterexample to an AG' property is a path
to a place where ' does not hold. A counterexample to an
AF' property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ' does not
hold along the stem and the cycle. Finally, a counterexample
to A['1W'2] is a path to a place where there is a sub-
counterexample to '1 as well as one to '2. A counterexample
to E['1U'2] can be of the same form as that of A['1W'2], as
well as one where '1 holds while '2 does not hold anywhere
along the path.
Calculating pre-images. Let ⇡ = (`0, ⇢0, `00), (`1, ⇢1, `

0
1),

. . . , (`n, ⇢n�1, `
0
n) be a path. We compute a pre-image for

every possible suffix of ⇡. That is, we denote pren+1 = S and
prei = pre((`i, ⇢i, `0i), . . . , (`n, ⇢n, `

0
n)) as the set of states

such that prei = {s | 9s0 2 prei+1 s.t. ((`i, s), (`0i, s0)) |=
⇢i}. Generaly speaking, given an assertion ↵ (in terms of Vars)
representing prei+1, and an assertion ⇢i (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let ↵0 denote 9 Vars. Vars = Vars0 ^ ↵. We thus consider
9 Vars0(Vars = Vars0 ^ 9 Vars. (Vars = Vars0 ^ (↵0 ^ ⇢i))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ' a precondition }h'i that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition }h'i is thus partitioned
to }h`i,'i for every location `i in the program. Thus, }h'i
takes the form

V
`i
(pc = `i) }h`i,'i). Here pc = `i is used

to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0
x0 = x + 1

⇢3 : x  0

⇢4 : x > 0

⇢5 : y0 = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0 ^
y 6= 1

x0 = x + 1
⇢3 : x  0 ^

y 6= 1 ⇢6 : y = 1

⇢4 : x > 0 ^
y 6= 1

⇢5 : y 6= 1
y0 = 1

⇢7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
' ⌘ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states } such that AG} holds, and such that
} |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ⌘ EF y = 1. For the
proposition y = 1, for every program location `i we have
}h`i, y = 1i , y = 1. We now attempt to prove that
} 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with }h i , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
} through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

}h i , (pc = `1) }h`1, i) ^ (pc = `2) }h`2,'i).

Recurse over the structure of the CTL formula.	

Find ℘ such that AG℘ holds, and ℘ |= EF y = 1.	

℘⟨φ⟩ takes the form /\ li (pc = li ⇒ ℘⟨li, φ⟩).
9

EXAMPLE (PT. 1)

where either '1 or '2 does not hold. A counter example for
disjunction '1 _ '2 is a state where both sub-formulas do
not hold. A counterexample to an AG' property is a path
to a place where ' does not hold. A counterexample to an
AF' property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ' does not
hold along the stem and the cycle. Finally, a counterexample
to A['1W'2] is a path to a place where there is a sub-
counterexample to '1 as well as one to '2. A counterexample
to E['1U'2] can be of the same form as that of A['1W'2], as
well as one where '1 holds while '2 does not hold anywhere
along the path.
Calculating pre-images. Let ⇡ = (`0, ⇢0, `00), (`1, ⇢1, `

0
1),

. . . , (`n, ⇢n�1, `
0
n) be a path. We compute a pre-image for

every possible suffix of ⇡. That is, we denote pren+1 = S and
prei = pre((`i, ⇢i, `0i), . . . , (`n, ⇢n, `

0
n)) as the set of states

such that prei = {s | 9s0 2 prei+1 s.t. ((`i, s), (`0i, s0)) |=
⇢i}. Generaly speaking, given an assertion ↵ (in terms of Vars)
representing prei+1, and an assertion ⇢i (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let ↵0 denote 9 Vars. Vars = Vars0 ^ ↵. We thus consider
9 Vars0(Vars = Vars0 ^ 9 Vars. (Vars = Vars0 ^ (↵0 ^ ⇢i))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ' a precondition }h'i that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition }h'i is thus partitioned
to }h`i,'i for every location `i in the program. Thus, }h'i
takes the form

V
`i
(pc = `i) }h`i,'i). Here pc = `i is used

to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0
x0 = x + 1

⇢3 : x  0

⇢4 : x > 0

⇢5 : y0 = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0 ^
y 6= 1

x0 = x + 1
⇢3 : x  0 ^

y 6= 1 ⇢6 : y = 1

⇢4 : x > 0 ^
y 6= 1

⇢5 : y 6= 1
y0 = 1

⇢7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
' ⌘ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states } such that AG} holds, and such that
} |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ⌘ EF y = 1. For the
proposition y = 1, for every program location `i we have
}h`i, y = 1i , y = 1. We now attempt to prove that
} 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with }h i , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
} through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

}h i , (pc = `1) }h`1, i) ^ (pc = `2) }h`2,'i).

Verify the universal dual of the existential property and seek a set of
counterexamples to serve as witnesses.	

Transform the program for the property φ = EF y = 1using its dual AG y
≠1.

10

EXAMPLE (PT. 1)

where either '1 or '2 does not hold. A counter example for
disjunction '1 _ '2 is a state where both sub-formulas do
not hold. A counterexample to an AG' property is a path
to a place where ' does not hold. A counterexample to an
AF' property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ' does not
hold along the stem and the cycle. Finally, a counterexample
to A['1W'2] is a path to a place where there is a sub-
counterexample to '1 as well as one to '2. A counterexample
to E['1U'2] can be of the same form as that of A['1W'2], as
well as one where '1 holds while '2 does not hold anywhere
along the path.
Calculating pre-images. Let ⇡ = (`0, ⇢0, `00), (`1, ⇢1, `

0
1),

. . . , (`n, ⇢n�1, `
0
n) be a path. We compute a pre-image for

every possible suffix of ⇡. That is, we denote pren+1 = S and
prei = pre((`i, ⇢i, `0i), . . . , (`n, ⇢n, `

0
n)) as the set of states

such that prei = {s | 9s0 2 prei+1 s.t. ((`i, s), (`0i, s0)) |=
⇢i}. Generaly speaking, given an assertion ↵ (in terms of Vars)
representing prei+1, and an assertion ⇢i (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let ↵0 denote 9 Vars. Vars = Vars0 ^ ↵. We thus consider
9 Vars0(Vars = Vars0 ^ 9 Vars. (Vars = Vars0 ^ (↵0 ^ ⇢i))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ' a precondition }h'i that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition }h'i is thus partitioned
to }h`i,'i for every location `i in the program. Thus, }h'i
takes the form

V
`i
(pc = `i) }h`i,'i). Here pc = `i is used

to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0
x0 = x + 1

⇢3 : x  0

⇢4 : x > 0

⇢5 : y0 = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0 ^
y 6= 1

x0 = x + 1

⇢3 : x  0 ^
y 6= 1

⇢6 : y = 1

⇢4 : x > 0 ^
y 6= 1

⇢5 : y 6= 1
y0 = 1

⇢7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
' ⌘ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states } such that AG} holds, and such that
} |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ⌘ EF y = 1. For the
proposition y = 1, for every program location `i we have
}h`i, y = 1i , y = 1. We now attempt to prove that
} 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with }h i , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
} through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

Initially ℘⟨φ⟩ = false as only failures to proving AG y ≠ 1
imply that there exists a witness such that EF y = 1.

11

EXAMPLE (PT. 1)

where either '1 or '2 does not hold. A counter example for
disjunction '1 _ '2 is a state where both sub-formulas do
not hold. A counterexample to an AG' property is a path
to a place where ' does not hold. A counterexample to an
AF' property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ' does not
hold along the stem and the cycle. Finally, a counterexample
to A['1W'2] is a path to a place where there is a sub-
counterexample to '1 as well as one to '2. A counterexample
to E['1U'2] can be of the same form as that of A['1W'2], as
well as one where '1 holds while '2 does not hold anywhere
along the path.
Calculating pre-images. Let ⇡ = (`0, ⇢0, `00), (`1, ⇢1, `

0
1),

. . . , (`n, ⇢n�1, `
0
n) be a path. We compute a pre-image for

every possible suffix of ⇡. That is, we denote pren+1 = S and
prei = pre((`i, ⇢i, `0i), . . . , (`n, ⇢n, `

0
n)) as the set of states

such that prei = {s | 9s0 2 prei+1 s.t. ((`i, s), (`0i, s0)) |=
⇢i}. Generaly speaking, given an assertion ↵ (in terms of Vars)
representing prei+1, and an assertion ⇢i (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let ↵0 denote 9 Vars. Vars = Vars0 ^ ↵. We thus consider
9 Vars0(Vars = Vars0 ^ 9 Vars. (Vars = Vars0 ^ (↵0 ^ ⇢i))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ' a precondition }h'i that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition }h'i is thus partitioned
to }h`i,'i for every location `i in the program. Thus, }h'i
takes the form

V
`i
(pc = `i) }h`i,'i). Here pc = `i is used

to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0
x0 = x + 1

⇢3 : x  0

⇢4 : x > 0

⇢5 : y0 = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0 ^
y 6= 1

x0 = x + 1

⇢3 : x  0 ^
y 6= 1

⇢6 : y = 1

⇢4 : x > 0 ^
y 6= 1

⇢5 : y 6= 1
y0 = 1

⇢7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
' ⌘ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states } such that AG} holds, and such that
} |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ⌘ EF y = 1. For the
proposition y = 1, for every program location `i we have
}h`i, y = 1i , y = 1. We now attempt to prove that
} 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with }h i , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
} through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

Use a safety prover to check reachability of ERR, and begin from l1.

For every reachable location l ∈ L in CEX1, we compute a pre-image
using the suffix of CEX1 from l onwards.

12

EXAMPLE (PT. 1)

where either '1 or '2 does not hold. A counter example for
disjunction '1 _ '2 is a state where both sub-formulas do
not hold. A counterexample to an AG' property is a path
to a place where ' does not hold. A counterexample to an
AF' property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ' does not
hold along the stem and the cycle. Finally, a counterexample
to A['1W'2] is a path to a place where there is a sub-
counterexample to '1 as well as one to '2. A counterexample
to E['1U'2] can be of the same form as that of A['1W'2], as
well as one where '1 holds while '2 does not hold anywhere
along the path.
Calculating pre-images. Let ⇡ = (`0, ⇢0, `00), (`1, ⇢1, `

0
1),

. . . , (`n, ⇢n�1, `
0
n) be a path. We compute a pre-image for

every possible suffix of ⇡. That is, we denote pren+1 = S and
prei = pre((`i, ⇢i, `0i), . . . , (`n, ⇢n, `

0
n)) as the set of states

such that prei = {s | 9s0 2 prei+1 s.t. ((`i, s), (`0i, s0)) |=
⇢i}. Generaly speaking, given an assertion ↵ (in terms of Vars)
representing prei+1, and an assertion ⇢i (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let ↵0 denote 9 Vars. Vars = Vars0 ^ ↵. We thus consider
9 Vars0(Vars = Vars0 ^ 9 Vars. (Vars = Vars0 ^ (↵0 ^ ⇢i))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ' a precondition }h'i that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition }h'i is thus partitioned
to }h`i,'i for every location `i in the program. Thus, }h'i
takes the form

V
`i
(pc = `i) }h`i,'i). Here pc = `i is used

to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0
x0 = x + 1

⇢3 : x  0

⇢4 : x > 0

⇢5 : y0 = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0 ^
y 6= 1

x0 = x + 1

⇢3 : x  0 ^
y 6= 1

⇢6 : y = 1

⇢4 : x > 0 ^
y 6= 1

⇢5 : y 6= 1
y0 = 1

⇢7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
' ⌘ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states } such that AG} holds, and such that
} |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ⌘ EF y = 1. For the
proposition y = 1, for every program location `i we have
}h`i, y = 1i , y = 1. We now attempt to prove that
} 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with }h i , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
} through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

pre(CEX1) = y = 0.	

When a new counterexample is discovered, we refine  

℘⟨l, φ⟩ resulting in ℘⟨l, φ⟩ = \/ n ∈ N pre(CEXn)
13

EXAMPLE (PT. 1)

where either '1 or '2 does not hold. A counter example for
disjunction '1 _ '2 is a state where both sub-formulas do
not hold. A counterexample to an AG' property is a path
to a place where ' does not hold. A counterexample to an
AF' property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ' does not
hold along the stem and the cycle. Finally, a counterexample
to A['1W'2] is a path to a place where there is a sub-
counterexample to '1 as well as one to '2. A counterexample
to E['1U'2] can be of the same form as that of A['1W'2], as
well as one where '1 holds while '2 does not hold anywhere
along the path.
Calculating pre-images. Let ⇡ = (`0, ⇢0, `00), (`1, ⇢1, `

0
1),

. . . , (`n, ⇢n�1, `
0
n) be a path. We compute a pre-image for

every possible suffix of ⇡. That is, we denote pren+1 = S and
prei = pre((`i, ⇢i, `0i), . . . , (`n, ⇢n, `

0
n)) as the set of states

such that prei = {s | 9s0 2 prei+1 s.t. ((`i, s), (`0i, s0)) |=
⇢i}. Generaly speaking, given an assertion ↵ (in terms of Vars)
representing prei+1, and an assertion ⇢i (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let ↵0 denote 9 Vars. Vars = Vars0 ^ ↵. We thus consider
9 Vars0(Vars = Vars0 ^ 9 Vars. (Vars = Vars0 ^ (↵0 ^ ⇢i))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ' a precondition }h'i that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition }h'i is thus partitioned
to }h`i,'i for every location `i in the program. Thus, }h'i
takes the form

V
`i
(pc = `i) }h`i,'i). Here pc = `i is used

to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0
x0 = x + 1

⇢3 : x  0

⇢4 : x > 0

⇢5 : y0 = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0 ^
y 6= 1

x0 = x + 1

⇢3 : x  0 ^
y 6= 1

⇢6 : y = 1

⇢4 : x > 0 ^
y 6= 1

⇢5 : y 6= 1
y0 = 1

⇢7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
' ⌘ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states } such that AG} holds, and such that
} |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ⌘ EF y = 1. For the
proposition y = 1, for every program location `i we have
}h`i, y = 1i , y = 1. We now attempt to prove that
} 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with }h i , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
} through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

pre(CEX1’) = x > 0.	

Computed a refinement for l2 from a counterexample
generated for l1. No need to verify l2 independently!

14

EXAMPLE (PT. 1)

where either '1 or '2 does not hold. A counter example for
disjunction '1 _ '2 is a state where both sub-formulas do
not hold. A counterexample to an AG' property is a path
to a place where ' does not hold. A counterexample to an
AF' property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ' does not
hold along the stem and the cycle. Finally, a counterexample
to A['1W'2] is a path to a place where there is a sub-
counterexample to '1 as well as one to '2. A counterexample
to E['1U'2] can be of the same form as that of A['1W'2], as
well as one where '1 holds while '2 does not hold anywhere
along the path.
Calculating pre-images. Let ⇡ = (`0, ⇢0, `00), (`1, ⇢1, `

0
1),

. . . , (`n, ⇢n�1, `
0
n) be a path. We compute a pre-image for

every possible suffix of ⇡. That is, we denote pren+1 = S and
prei = pre((`i, ⇢i, `0i), . . . , (`n, ⇢n, `

0
n)) as the set of states

such that prei = {s | 9s0 2 prei+1 s.t. ((`i, s), (`0i, s0)) |=
⇢i}. Generaly speaking, given an assertion ↵ (in terms of Vars)
representing prei+1, and an assertion ⇢i (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let ↵0 denote 9 Vars. Vars = Vars0 ^ ↵. We thus consider
9 Vars0(Vars = Vars0 ^ 9 Vars. (Vars = Vars0 ^ (↵0 ^ ⇢i))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ' a precondition }h'i that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition }h'i is thus partitioned
to }h`i,'i for every location `i in the program. Thus, }h'i
takes the form

V
`i
(pc = `i) }h`i,'i). Here pc = `i is used

to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0
x0 = x + 1

⇢3 : x  0

⇢4 : x > 0

⇢5 : y0 = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

⇢1 : x0 = ⇤
y0 = 0

⇢2 : x  0 ^
y 6= 1

x0 = x + 1

⇢3 : x  0 ^
y 6= 1

⇢6 : y = 1

⇢4 : x > 0 ^
y 6= 1

⇢5 : y 6= 1
y0 = 1

⇢7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
' ⌘ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states } such that AG} holds, and such that
} |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ⌘ EF y = 1. For the
proposition y = 1, for every program location `i we have
}h`i, y = 1i , y = 1. We now attempt to prove that
} 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with }h i , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
} through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

Ensure EF y = 1 satisfies all initial states: Rule out CEX1 by
adding ¬pre(CEX1) to each transition from l to the error state. 	

Re-run the safety checker. 	

No more counterexamples are generated and all locations
covered: 
℘⟨EF y = 1⟩= (pc=l1 ⇒y=0)∧(pc=l2 ⇒x>0).	

15

EXAMPLE (PT. 1)

Modify φ = AGEF y = 1 by using ℘⟨EF y = 1⟩: 	

φ′ = AG ((pc = l1 ⇒y=0)∧(pc=l2 ⇒x>0)).

16

EXAMPLE (PT. 2)

`1 `2

ERR

⇢1 : x0 = 0
y0 = 0

⇢2 : x  0 ^
y = 0

x0 = x + 1
⇢3 : x  0 ^

y = 0
⇢6 : y 6= 0

⇢4 : x > 0 ⇢5 : x > 0
y0 = 1

⇢7 : x  0

Fig. 3: The transformation of the program from Figure 1 for the sub-property
AGEF y = 1 to be utilized in the verification algorithm. The nested property
EF y = 1 is substituted with its precondition resulting in a transformation for
AG ((pc = `1) y = 0) _ (pc = `2) x > 0)) instead.

}h i , (pc = `1) }h`1, i) ^ (pc = `2) }h`2,'i).

We begin with `1. To check AG y 6= 1 we use a source-
to-source transformation that reduces checking of universal
CTL properties to safety [10]. The transformation returns the
program in Figure 2 (new conditions outlined), on which
we use a safety prover to check reachability of ERR. We
get counterexample CEX1: h`0, ⇢1, `1i, h`1, ⇢3, `1i, h`1, ⇢2, `1i,
h`1, ⇢4, `2i, h`2, ⇢5, `2i, h`2, ⇢7,ERRi.

We then calculate the pre-image of CEX1 for multiple
locations along the counterexample. We do so by iterating
along the counterexample path, and for every reachable lo-
cation ` 2 L in CEX1, we compute a pre-image utilizing
the suffix of CEX1 from ` onwards. Thus we can avoid
redundant reasoning by utilizing sequential locality based upon
the program’s control-flow graph to compute a refinement for
`2 from a counterexample generated for `1. In this case, we
compute } , (pc = `1) y = 0) ^ (pc = `2) x > 0)

One existential witness may not be sufficient to find all
states that satisfy in the respective locations, we thus rule
out CEX1 by adding ¬}h`i, i to each transition from `i to the
error state. We re-run our safety checker and find that we do
not generate anymore counterexamples, thus completing our
precondition synthesis for EF y = 1.

Note that the technique used by Cook & Koskinen [10] im-
poses that they spend time computing both }h`1, i, }h`2, i
separately while the technique used by Beyene et al. [4] solves
a constraint based on an entire path when it’s only necessary
to reason about a single state.

We now modify ' by using }h i and get '0 = AG ((pc =
`1) y = 0) ^ (pc = `2) x > 0)). The constructed
transformation reducing the property '0 to safety can be seen
in Figure 3. Note that in this particular transformation, the
outlined instrumented conditions correspond to each of the
location preconditions generated for EF y = 1. As '

0 is
universal, we begin with the initial precondition }h'i , true.
Failures to the proof attempt will result in strengthening
the precondition by adding negated pre-images of discovered
counterexamples. In this case no counterexamples are returned
and we get }h'i , true. This proves that AGEF y = 1 holds.

1 let VERIFY (', P) : bool =
2
3 (L, E,Vars) = P

4 } = TEMPORALWP(', P)
5 return 8(`0, ⇢, `) 2 E 8s . (s, s) |= ⇢) s |= }h`,'i

Fig. 4: Procedure VERIFY, which wraps TEMPORALWP and then checks
all initial states.

1 let rec TEMPORALWP(, P) : map =
2 } = INITIALIZEMAP (,P)
3 M = ;
4  = []
5 (L, E,Vars) = P

6 if = ↵ is atomic then
7 foreach {` | (`, t, `0) 2 E}
8 }h`, i = pre(t,↵) ; }h`,¬ i = ¬pre(t,↵)
9 done

10 else
11 match () with
12 | 0

1^ 0
2 | 0

1 _ 0
2 | 0

1U 0
2 | 0

1W

0
2 !

13 } = } [TEMPORALWP(0
1, P)[TEMPORALWP(0

2, P)
14 | AF 0

1 | AG 0
1 | ¬ 0

1 !
15 } = } [TEMPORALWP(0

1, P)
16 C = FINDCUTPOINTS(P)
17 foreach ` 2 C do
18 P

0 = TRANSFORM(h`, i,M, P,})
19 CEX, M = REFINE(P 0

, ,},M)
20 while CEX 6= ; do
21 },P 0 = PROPAGATE(CEX, P 0

,, , `,})
22  = CEX :: 
23 CEX,M = REFINE(P 0

, ,},M)
24 done
25 done
26 }

Fig. 5: Procedure TEMPORALWP getting a temporal property and a program
and returning the map from program locations and sub-formulas to assertions.

IV. PROCEDURE

In this section we describe the details of our CTL model
checking procedure. Figure 4 depicts VERIFY, which wraps
the main procedure TEMPORALWP in Figure 5. Other sub-
routines used in TEMPORALWP are in Figures 6–10.

We exploit the natural decomposition of the state
space given by the control flow graph. That is, using a
counterexample-guided precondition synthesis strategy, we
compute program-location-specific preconditions. In our ap-
proach the table } is the key data structure which maps
pairs of program locations and sub-formulae to assertions
which represent the current candidate precondition that would
guarantee the sub-formulae at a respective location. That is,

1 let INITIALIZEMAP (,P) : map =
2
3 } = ;
4 (L, E,Vars) = P

5 if = E 0 then
6 foreach ` 2 L do
7 }h`, i = false;
8 }h`,¬ i = true
9 done

10 else
11 foreach ` 2 L do
12 }h`, i = true;
13 }h`,¬ i = false
14 done
15 return }

Fig. 6: Initializing the map from program locations and sub-formulas to
assertions.

℘⟨l, φ⟩ resulting in ℘⟨l, φ⟩ = /\ n ∈ N ¬pre(CEXn)	

Universal: the initial precondition ℘⟨φ⟩ = true. No counterexamples are
generated thus ℘⟨ AGEF y = 1⟩= true!

17

EXAMPLE (PT. 2)

`1 `2

ERR

⇢1 : x0 = 0
y0 = 0

⇢2 : x  0 ^
y = 0

x0 = x + 1
⇢3 : x  0 ^

y = 0
⇢6 : y 6= 0

⇢4 : x > 0 ⇢5 : x > 0
y0 = 1

⇢7 : x  0

Fig. 3: The transformation of the program from Figure 1 for the sub-property
AGEF y = 1 to be utilized in the verification algorithm. The nested property
EF y = 1 is substituted with its precondition resulting in a transformation for
AG ((pc = `1) y = 0) _ (pc = `2) x > 0)) instead.

}h i , (pc = `1) }h`1, i) ^ (pc = `2) }h`2,'i).

We begin with `1. To check AG y 6= 1 we use a source-
to-source transformation that reduces checking of universal
CTL properties to safety [10]. The transformation returns the
program in Figure 2 (new conditions outlined), on which
we use a safety prover to check reachability of ERR. We
get counterexample CEX1: h`0, ⇢1, `1i, h`1, ⇢3, `1i, h`1, ⇢2, `1i,
h`1, ⇢4, `2i, h`2, ⇢5, `2i, h`2, ⇢7,ERRi.

We then calculate the pre-image of CEX1 for multiple
locations along the counterexample. We do so by iterating
along the counterexample path, and for every reachable lo-
cation ` 2 L in CEX1, we compute a pre-image utilizing
the suffix of CEX1 from ` onwards. Thus we can avoid
redundant reasoning by utilizing sequential locality based upon
the program’s control-flow graph to compute a refinement for
`2 from a counterexample generated for `1. In this case, we
compute } , (pc = `1) y = 0) ^ (pc = `2) x > 0)

One existential witness may not be sufficient to find all
states that satisfy in the respective locations, we thus rule
out CEX1 by adding ¬}h`i, i to each transition from `i to the
error state. We re-run our safety checker and find that we do
not generate anymore counterexamples, thus completing our
precondition synthesis for EF y = 1.

Note that the technique used by Cook & Koskinen [10] im-
poses that they spend time computing both }h`1, i, }h`2, i
separately while the technique used by Beyene et al. [4] solves
a constraint based on an entire path when it’s only necessary
to reason about a single state.

We now modify ' by using }h i and get '0 = AG ((pc =
`1) y = 0) ^ (pc = `2) x > 0)). The constructed
transformation reducing the property '0 to safety can be seen
in Figure 3. Note that in this particular transformation, the
outlined instrumented conditions correspond to each of the
location preconditions generated for EF y = 1. As '

0 is
universal, we begin with the initial precondition }h'i , true.
Failures to the proof attempt will result in strengthening
the precondition by adding negated pre-images of discovered
counterexamples. In this case no counterexamples are returned
and we get }h'i , true. This proves that AGEF y = 1 holds.

1 let VERIFY (', P) : bool =
2
3 (L, E,Vars) = P

4 } = TEMPORALWP(', P)
5 return 8(`0, ⇢, `) 2 E 8s . (s, s) |= ⇢) s |= }h`,'i

Fig. 4: Procedure VERIFY, which wraps TEMPORALWP and then checks
all initial states.

1 let rec TEMPORALWP(, P) : map =
2 } = INITIALIZEMAP (,P)
3 M = ;
4  = []
5 (L, E,Vars) = P

6 if = ↵ is atomic then
7 foreach {` | (`, t, `0) 2 E}
8 }h`, i = pre(t,↵) ; }h`,¬ i = ¬pre(t,↵)
9 done

10 else
11 match () with
12 | 0

1^ 0
2 | 0

1 _ 0
2 | 0

1U 0
2 | 0

1W

0
2 !

13 } = } [TEMPORALWP(0
1, P)[TEMPORALWP(0

2, P)
14 | AF 0

1 | AG 0
1 | ¬ 0

1 !
15 } = } [TEMPORALWP(0

1, P)
16 C = FINDCUTPOINTS(P)
17 foreach ` 2 C do
18 P

0 = TRANSFORM(h`, i,M, P,})
19 CEX, M = REFINE(P 0

, ,},M)
20 while CEX 6= ; do
21 },P 0 = PROPAGATE(CEX, P 0

,, , `,})
22  = CEX :: 
23 CEX,M = REFINE(P 0

, ,},M)
24 done
25 done
26 }

Fig. 5: Procedure TEMPORALWP getting a temporal property and a program
and returning the map from program locations and sub-formulas to assertions.

IV. PROCEDURE

In this section we describe the details of our CTL model
checking procedure. Figure 4 depicts VERIFY, which wraps
the main procedure TEMPORALWP in Figure 5. Other sub-
routines used in TEMPORALWP are in Figures 6–10.

We exploit the natural decomposition of the state
space given by the control flow graph. That is, using a
counterexample-guided precondition synthesis strategy, we
compute program-location-specific preconditions. In our ap-
proach the table } is the key data structure which maps
pairs of program locations and sub-formulae to assertions
which represent the current candidate precondition that would
guarantee the sub-formulae at a respective location. That is,

1 let INITIALIZEMAP (,P) : map =
2
3 } = ;
4 (L, E,Vars) = P

5 if = E 0 then
6 foreach ` 2 L do
7 }h`, i = false;
8 }h`,¬ i = true
9 done

10 else
11 foreach ` 2 L do
12 }h`, i = true;
13 }h`,¬ i = false
14 done
15 return }

Fig. 6: Initializing the map from program locations and sub-formulas to
assertions.

Partition CTL formula preconditions by program location:	

℘⟨φ⟩ takes the form /\ li (pc = li ⇒ ℘⟨li, φ⟩).	

Universal location preconditions: 	

℘⟨l, φ⟩ = /\ n ∈ N ¬pre(CEXn)	

Existential location preconditions: 	

℘⟨l, φ⟩ = \/ n ∈ N pre(CEXn)	

18

RECAP

EXPERIMENTS

19

Built as an extension to the open source project T2 	

Source Code: http://research.microsoft.com/en-us/projects/t2/.	

Input: C files converted to t2 file format + CTL specification.	

Compared our tool to :	

	

 [1] T. A. Beyene, C. Popeea, and A. Rybalchenko, “Solving existentially
quantified horn clauses,” in CAV’13. Springer, 2013	

	

	

 [2] B. Cook and E. Koskinen, “Reasoning about nondeterminism in
programs,” in PLDI’13. ACM, 2013.

EXPERIMENTS

20

LoC Property T2 [1] [2]
1050 AG(b = 1 —> AF(u = 0)) 67.3 T/O T/O
1050 EG(b = 1 —> EF(u = 0)) 36.2 T/O T/O
370 AG(a = 1 —> EF(r = 1)) 6.8 35.45 90.0
370 EF(a = 1 && AG (r ≠1)) 4.7 T/O T/O
370 EG(io ≠ 1) && EG(ret ≠ 1) 13.5 T/O 7.6
370 AG(io ≠ 1) || AG(ret ≠ 1) 8.0 0.1 T/O
90 AGEF w = 1 2.0 0.7 T/O
90 EFAG w ≠ 1 2.0 0.1 T/O
90 EFEG w ≠ 1 0.1 0.1 35.2

LIMITATIONS

Divergence can occur due to infinitely many counterexamples.	

Take pre-image α of a PC, quantify out all variables that are
updated proceeding a program location.	

Can lead to unsoundness due to over-approximation of the set of
states for existential path quantifiers. 	

Check that the precondition is sound e.g.  
that ℘1 ⇒ EG ℘2′, we can use SMT based strategies to double
check the small lemma on initial locations. 	

21

SUMMARY

A new symbolic model checking procedure for CTL verification of
infinite-state programs.	

Use a counterexample-guided precondition synthesis strategy to
compute location-specific preconditions.	

Reduces the amount of irrelevant reasoning traditionally
performed as several preconditions for each location can be
computed simultaneously. 	

Performance improvement and scalability!
22

BACKGROUND

P = (L, E, Vars),	

Each edge τ = (l,ρ,l’) in E, where l, l’∈ L and ρ is a condition, specifies possible transitions in the
program.	

T = (S, R)	

S = L × (Vars → Vals)	

R ⊆ S × S	

A cut-point is a set C such that C ⊆ L and every cycle in the program’s graph contains at least one
cut-point.	

!
Pre-images: For a path π = (l

0
, ρ

0
, l’

0
), (l

1
, ρ

1
, l’

1
)n…, (l

n
, ρ

n
, l’

n
), we compute a pre-image for every

possible suffix of π:	

pren+1 = S and prei = pre[(li, ρi, l’i), . . . , (ln, ρn, l’n)] as the set of states such that  
prei = {s | ∃s′ ∈ prei+1 s.t. ((li, s), (l′i, s′)) |= ρi}.

23

FINDING TEMPORAL PRECONDITIONS

Recurse over the structure of the given CTL formula.	

For each CTL sub-formula φ we find a precondition ℘⟨φ⟩ that ensures its
satisfaction. 	

Each sub-formula φ is then replaced with ℘⟨φ⟩ within the original formula.	

Note: It is only necessary to handle formulas of nesting depth 1.	

To utilize sequential locality of a counterexample’s control-flow graph: 	

℘⟨φ⟩ takes the form /\ li (pc = li ⇒ ℘⟨li, φ⟩).	

24

FINDING TEMPORAL PRECONDITIONS

For a universal CTL sub-property:	

A precondition ℘⟨l, φ⟩ for a program location l is initialized to true.	

When a new counterexample is discovered, we refine  
℘⟨l, φ⟩ resulting in ℘⟨l, φ⟩ = /\

n ∈ N
¬pre(CEXn)	

For an existential CTL sub-property:	

Verify the universal dual of the existential property and seek a set of
counterexamples to serve as witnesses.	

A precondition ℘⟨l, φ⟩ for a program location l is initialized to false.	

When a new counterexample is discovered, we refine  
℘⟨l, φ⟩ resulting in ℘⟨l, φ⟩ = \/

n ∈ N
pre(CEXn)

25

