FASTER TEMPORAL REASONING FOR INFINITE-STATE
PROGRAMS

Heidy Khlaaf Byron Cook ™ Nir Piterran’

|Unizver“si’ty College London
! Microsoft Research
University of Leicester

BRIEF OVERVIEW

o A new symbolic model checking procedure for CTL verification of
infinite-state programes.

» Counterexample-guided precondition synthesis strategy to compute

location(PC) specific preconditions.
» Existing tools not scalable. We propose:

» Compositional strategy via exploiting the natural decomposition of

the program’s state space.

» Performance improvement and scalability!

2

CTL-A REFRESHER

» lemporal logic reasoning about sets of states.
» |Implemented via formula structure.
» Reasoning about non-deterministic (branching) programs.

o Jermination - AFAX false, Non-Termination - EGEX true, AG - Safety

» [hese operators can be nested to generate complex liveness and
safety properties.

» Used to uncover bugs in device drivers, operating systems, servers, etc.

3

CTL-A REFRESHER

o A @ — All: @ has to hold on all paths starting from all inrtial states.

o £ (p — Exists: there exists at least one path starting from all inrtial
states where holds.

o G — Globally: ¢ has to hold on the all states along a path.
o @ — rinally: @ eventually has to hold

o Other operators include X @ — Next, | U ¢, — Until, | W
— Weak untll.

INTUITION

o Verify EFy > Z

INTUITION

o [he set of states satisfying EF y > z before a program
command Is very often the same as the set of states
respecting EF y > z after the command.

INTUITION

/
T1:y =0 ,
7 =10 : Ty >z
T3 12 =X y =0
e
To 1Yy < T

/_
y =y+1 T x> 0
r =x—1

» We can infer whether a command is likely to affect the truth of
Ry >z

o From one counterexample, we use precondition synthesis to
infer the pre-image of all locations within a counterexample.

7

- XAMPL

» Prove the CTL property AGEFy = |.

- XAMPLE

na

o Recurse over the structure of the CTL formula.

pP3 . X<O P5 -

* Find g such that AGg holds,and o |= EFy = |.

° () takes the form /\ (pc = |, = o, ©)).

9

“XAMPLE (PT. 1)

» Verify the universal dual of the existential property and seek a set of
counterexamples to serve as witnesses.

o [ransform the program for the property @@ = EF y = lusing its dual AG y
*+ .

- XAMPL

o |ntially o(@) = false as only failures to proving AG y # |
imply that there exists a witness such that EFy = 1.

- XAMPL

» Use a safety prover to check reachability of ERR, and begin from l4.

» [or every reachable location | € L in CEX|, we compute a pre-image
using the suffix of CEX| from | onwards.

12

“XAMPLE (PT. 1)

P2 X<O0A

y 7 1

X =x+1
P3 X<O0A

o pre(CEX)) =y =0
» When a new counterexample Is discovered, we refine

<, @) resulting In (I, @) = \/ ~enpre(CeXy)

13

“XAMPLE (PT. 1)

o pre(CEX)) =x>0.

o Computed a refinement for |, from a counterexample
y!

oenerated for ||. No need to verify |, independent

|4

“XAMPLE (PT. I

o Ensure EF y = | satisfies all initial states: Rule out CEX by

adding 7pre(CEX|) to each transition from | to the error state.
» Re-run the safety checker.

» No more counterexamples are generated and all locations
covered:

@<EFy =)= (pc=l, =2y=0)A(pc=l, =2x>0).

- XAMPL

 Modify @ = AGEFy = | by using go(EF y = |):
o (P=AG ((pc = |} =2y=0)A(pc=l, =x>0)).

16

-XAMPLE (PT1.2)

" o, @) resulting in o(l, @) = /\neN_'P'”e(CEXn)

o Universal: the initial precondition (@) = true. No counterexamples are
senerated thus go(AGEF y = |)= truel

|/

RECAP

o Partition CTL formula preconditions by program location:

o () takes the form /\|i (pc =1 = ol ©).
o Universal location preconditions:

* (P> :/\neN—'pre(CEXn)

o Existential location precondrtions:

* () = \/neNpre(CEXn)

-XPERIMENTS

o Bullt as an extension to the open source project 12
o Source Code: http://research.microsoft.com/en-us/projects/t2/.
o Input: C files converted to t2 file format + CTL specification.

o Compared our tool to :

[I]T.A. Beyene, C. Popeea, and A. Rybalchenko, “Solving existentially
quantified horn clauses,” in CAV'[3. Springer, 2013

[2] B. Cook and E. Koskinen, “Reasoning about nondeterminism in
programs,’ In PLDI"[3. ACM, 201 3.

“RIMENTS

LoC Property 12 [|] [2]
1050 AG(b = | —> AR(u =0)) 6/.3 | 1T/O0 | T1/0
1050 EG(b = | —> EF(u = 0)) 362 | T/O | 1/0
370 AGGa= | —>EFr= 1)) 6.8 | 3545 | 900
370 EF(@a = | & AG (r #1)) 4.7 | T/IO | T/O
370 EG(lo # |) && EG(ret # 1) 135 | T/O /.6
370 AG(o # 1) || AG(ret # |) 8.0 0.1 1/0
90 AGEF w = 2.0 0.7 1/0
90 EFAG w # 2.0 0.1 1/0
90 EFEG w # 0.1 0.1 35.2

20

LIMITATIONS

o Divergence can occur due to infinitely many counterexamples.

o Jake pre-image & of a PC, quantify out all variables that are
updated proceeding a program location.

o (Can lead to unsoundness due to over-approximation of the set of
states for existential path quantifiers.

o (Check that the precondition is sound e.g.
that o1 = EG g2, we can use SMT based strategies to double

check the small lemma on initial locations.

2

SUMMARY

o A new symbolic model checking procedure for CTL verification of
infinrte-state programs.

» Use a counterexample-guided precondition synthesis strategy to
compute location-specific preconditions.

» Reduces the amount of irrelevant reasoning traditionally
performed as several preconditions for each location can be

computed simultaneously.

o Performance improvement and scalability!

22

BACKGROUND

o P = (L, EVars),

o EFach edge T = (I,p,I) in E,where |,I'e L and p Is a condition, specifies possible transitions in the
program.

o T=(5R)
o S =L x (Vars = Vals)
e RCS XS

o A cut-point is a set C such that C C L and every cycle in the program’s graph contains at least one

cut-point.
e Pre-images: For a path 1T = (IO, P, I’O), (||’ o I'l)n. - (In, P, I'n), we compute a pre-image for every
possible suffix of TT:

e pre . =5andpre =pre[(l,p. [) ..., (I, p I)]asthe set of states such that
pre = {s | 3s" e pre_, st.((,5), (I,;s") |= p}.

23

FINDING TEMPORAL PRECONDITIONS

Recurse over the structure of the given CTL formula.

For each CTL sub-formula ¢ we find a precondition @{@) that ensures Its
satisfaction.

Fach sub-formula @ is then replaced with (@) within the original formula.
o Note: It I1s only necessary to handle formulas of nesting depth |.

To utilize sequential locality of a counterexample’s control-flow graph:

° () takes the form /\ - (pc == o, ©)).

24

~IN

DING T

-MPORAL PR

o For a universal CTL sub-property:

-CON

DITIONS

» A precondition @I,) for a program location | is inrtialized to true.

» When a new counterexample is discovered, we refine

<, @) resulting in (I,) = /\neN—'pre(CEXn)

o For an existential CTL sub-property:

o Verify the universal dual of the existential property and seek a set of
counterexamples to serve as witnesses.

» A precondition @(l,) for a program location | is initialized to false.

» When a new counterexample is discovered, we refine

<1, @) resulting in @(l, @y = V neNpre(CEXn)

25

