### FASTER TEMPORAL REASONING FOR INFINITE-STATE PROGRAMS

**Heidy Khlaaf**<sup>I</sup> Byron Cook<sup>1,2</sup> Nir Piterman<sup>3</sup>

<sup>1</sup>University College London <sup>2</sup>Microsoft Research <sup>3</sup>University of Leicester

# BRIEF OVERVIEW

- A new symbolic model checking procedure for CTL verification of infinite-state programs.
- Counterexample-guided precondition synthesis strategy to compute location(PC) specific preconditions.
- Existing tools not scalable. We propose:
  - Compositional strategy via exploiting the natural decomposition of the program's state space.
  - Performance improvement and scalability!

## CTL - A REFRESHER

- Temporal logic reasoning about sets of states.
- Implemented via formula structure.
- Reasoning about non-deterministic (branching) programs.
- Termination AFAX false, Non-Termination EGEX true, AG Safety
- These operators can be nested to generate complex liveness and safety properties.
- Used to uncover bugs in device drivers, operating systems, servers, etc.

## CTL - A REFRESHER

- A  $\phi$  All:  $\phi$  has to hold on all paths starting from all initial states.
- E  $\phi$  Exists: there exists at least one path starting from all initial states where  $\phi$  holds.
- G  $\phi$  Globally:  $\phi$  has to hold on the all states along a path.
- F  $\phi$  Finally:  $\phi$  eventually has to hold.
- Other operators include X  $\phi$  Next,  $\phi_1$  U  $\phi_2$  Until,  $\phi_1$  W  $\phi_2$  Weak until.

### INTUITION



• Verify EF y > z

### INTUITION



 The set of states satisfying EF y > z before a program command is very often the same as the set of states respecting EF y > z after the command.

### INTUITION



- We can infer whether a command is likely to affect the truth of EF y > z.
  - From one counterexample, we use precondition synthesis to infer the pre-image of all locations within a counterexample.

## EXAMPLE (PT. I)



• Prove the CTL property AGEF y = 1.

## EXAMPLE (PT. I)



- Recurse over the structure of the CTL formula.
- Find  $\wp$  such that AG $\wp$  holds, and  $\wp$  |= EF y = 1.
- $\wp\langle\phi\rangle$  takes the form  $\bigwedge_{i}$  (pc =  $i_i \Rightarrow \wp\langle i_i, \phi\rangle$ ).

#### EXAMPLE (PI.I) $\begin{array}{l} \rho_1: \mathbf{X}' = \ast \\ \mathbf{y}' = 0 \end{array}$ $\rho_4: \mathbf{X} > 0 \land$ $y \neq 1$ $\mathbf{y} \neq 1$ $\rho_2: \mathbf{X} \leq 0 \land$ $\mathbf{y} \neq 1$ $\ell_2$ $\ell_1$ $\rho_3: \mathbf{X} \leq 0 \land$ $\mathbf{y} \neq \mathbf{1}$ $\rho_6 : | \mathbf{y} = 1$ $\rho_7 : | \mathbf{y} = 1$ ERR

- Verify the universal dual of the existential property and seek a set of counterexamples to serve as witnesses.
- Transform the program for the property  $\phi = EF y = I \text{ using its dual AG y} \neq I$ .

#### EXAMPLE (PT. I) $\rho_1: \mathbf{X}' = \ast$ $\rho_4: \mathbf{X} > 0 \land$ $\mathbf{y}'=0$ $\mathbf{y} \neq \mathbf{1}$ $\mathbf{y} \neq 1$ $ho_5$ : $\rho_2: \mathbf{x} \leq 0 \land$ $\ell_2$ $\ell_1$ $\mathbf{x}' = \mathbf{x} + 1$ $\rho_3: \mathbf{X} \leq 0 \land$ $y \neq 1$ $\rho_6 : | \mathbf{y} = 1$ $\rho_7 : | \mathbf{y} = 1$ ERR

• Initially  $\wp(\phi) =$  false as only failures to proving AG y  $\neq$  1 imply that there exists a witness such that EF y = 1.



- Use a safety prover to check reachability of ERR, and begin from  $I_{1}$ .
- For every reachable location  $I \in L$  in CEX<sub>1</sub>, we compute a pre-image using the suffix of CEX<sub>1</sub> from I onwards.



- $pre(CEX_1) = y = 0.$
- When a new counterexample is discovered, we refine  $\sqrt[6]{}\langle I, \phi \rangle$  resulting in  $\sqrt[6]{}\langle I, \phi \rangle = V_{n \in N} \text{pre}(\text{CEX}_n)$



•  $pre(CEX_{1'}) = x > 0.$ 

• Computed a refinement for  $I_2$  from a counterexample generated for  $I_1$ . No need to verify  $I_2$  independently!

# $\mathsf{EXAMPLE}(\mathsf{PT.I})$

- Ensure EF y = 1 satisfies all initial states: Rule out CEX by adding  $\neg$ pre(CEX<sub>1</sub>) to each transition from I to the error state.
- Re-run the safety checker.
- No more counterexamples are generated and all locations covered:

$$\Im \langle \mathsf{EF} \mathsf{y} = \mathsf{I} \rangle = (\mathsf{pc} = \mathsf{I}_1 \Rightarrow \mathsf{y} = 0) \land (\mathsf{pc} = \mathsf{I}_2 \Rightarrow \mathsf{x} > 0).$$



- Modify  $\phi = AGEF y = I$  by using  $\Im(EF y = I)$ :
  - $\varphi = AG ((pc = I_1 \Rightarrow y=0) \land (pc=I_2 \Rightarrow x>0)).$



•  $\mathfrak{S}(I, \boldsymbol{\phi})$  resulting in  $\mathfrak{S}(I, \boldsymbol{\phi}) = \bigwedge_{n \in \mathbb{N}} \neg \text{pre}(\text{CEX}_n)$ 

• Universal: the initial precondition  $\wp\langle \varphi \rangle$  = true. No counterexamples are generated thus  $\wp\langle AGEF \rangle = 1 \rangle$  = true!

### RECAP

• Partition CTL formula preconditions by program location:

• 
$$\mathfrak{O}\langle \varphi \rangle$$
 takes the form  $\bigwedge_{i} (\text{pc} = i \Rightarrow \mathfrak{O}\langle i, \varphi \rangle).$ 

• Universal location preconditions:

• 
$$\mathcal{O}(I, \phi) = \bigwedge_{n \in \mathbb{N}} \neg pre(CEX_n)$$

• Existential location preconditions:

• 
$$\delta \langle I, \phi \rangle = V_{n \in N} \text{pre}(\text{CEX}_n)$$

## EXPERIMENTS

- Built as an extension to the open source project T2
  - Source Code: http://research.microsoft.com/en-us/projects/t2/.
- Input: C files converted to t2 file format + CTL specification.
- Compared our tool to :

[1] T. A. Beyene, C. Popeea, and A. Rybalchenko, "Solving existentially quantified horn clauses," in *CAV* 13. Springer, 2013

[2] B. Cook and E. Koskinen, "Reasoning about nondeterminism in programs," in *PLDI'I* 3. ACM, 2013.

## EXPERIMENTS

| LoC  | Property                              | T2   | [1]   | [2]  |
|------|---------------------------------------|------|-------|------|
| 1050 | $AG(b = I \longrightarrow AF(u = 0))$ | 67.3 | T/O   | T/O  |
| 1050 | $EG(b = I \longrightarrow EF(u = 0))$ | 36.2 | T/O   | T/O  |
| 370  | $AG(a = I \longrightarrow EF(r = I))$ | 6.8  | 35.45 | 90.0 |
| 370  | EF(a = 1 && AG (r ≠1))                | 4.7  | T/O   | T/O  |
| 370  | EG(io ≠ I) && EG(ret ≠ I)             | 13.5 | T/O   | 7.6  |
| 370  | AG(io ≠ I)    AG(ret ≠ I)             | 8.0  | 0.1   | T/O  |
| 90   | AGEF w = 1                            | 2.0  | 0.7   | T/O  |
| 90   | EFAG w ≠ I                            | 2.0  | 0.1   | T/O  |
| 90   | EFEG w ≠ I                            | 0.1  | 0.1   | 35.2 |

## LIMITATIONS

- Divergence can occur due to infinitely many counterexamples.
  - Take pre-image  $\alpha$  of a PC, quantify out all variables that are updated proceeding a program location.
  - Can lead to unsoundness due to over-approximation of the set of states for existential path quantifiers.
  - Check that the precondition is sound e.g. that  $\wp_1 \Rightarrow EG \wp_2$ , we can use SMT based strategies to double check the small lemma on initial locations.

### SUMMARY

- A new symbolic model checking procedure for CTL verification of infinite-state programs.
- Use a counterexample-guided precondition synthesis strategy to compute location-specific preconditions.
- Reduces the amount of irrelevant reasoning traditionally performed as several preconditions for each location can be computed simultaneously.
- Performance improvement and scalability!

### BACKGROUND

- $\mathbf{P} = (L, E, Vars),$
- Each edge τ = (I,ρ,I') in E, where I, I'∈ L and ρ is a condition, specifies possible transitions in the program.
- $\mathbf{T} = (S, R)$ 
  - $\mathbf{S} = \mathbf{L} \times (\text{Vars} \rightarrow \text{Vals})$
  - $\mathbf{R} \subseteq S \times S$
- A **cut-point** is a set C such that C ⊆ L and every cycle in the program's graph contains at least one cut-point.
- **Pre-images**: For a path  $\pi = (l_0, \rho_0, l_0'), (l_1, \rho_1, l_1'), \dots, (l_n, \rho_n, l_n')$ , we compute a pre-image for every possible suffix of  $\pi$ :

• 
$$\operatorname{pre}_{n+1} = S$$
 and  $\operatorname{pre}_{i} = \operatorname{pre}[(I_{i}, \rho_{i}, I'_{i}), \dots, (I_{n}, \rho_{n}, I'_{n})]$  as the set of states such that  $\operatorname{pre}_{i} = \{s \mid \exists s' \in \operatorname{pre}_{i+1} \text{ s.t. } ((I_{i}, s), (I'_{i'}, s')) \mid = \rho_{i}\}.$ 

# FINDING TEMPORAL PRECONDITIONS

- Recurse over the structure of the given CTL formula.
- For each CTL sub-formula  $\phi$  we find a precondition  $\wp\langle\phi\rangle$  that ensures its satisfaction.
- Each sub-formula  $\phi$  is then replaced with  $\wp\langle\phi\rangle$  within the original formula.
  - Note: It is only necessary to handle formulas of nesting depth 1.
- To utilize sequential locality of a counterexample's control-flow graph:

• 
$$(\varphi \land \varphi)$$
 takes the form  $\bigwedge_{i} (pc = i_i \Rightarrow \langle \varphi \land i_i, \phi \rangle).$ 

# FINDING TEMPORAL PRECONDITIONS

• For a universal CTL sub-property:

• A precondition  $\wp\langle I, \phi \rangle$  for a program location I is initialized to true.

• When a new counterexample is discovered, we refine  $\log \langle I, \phi \rangle$  resulting in  $\log \langle I, \phi \rangle = \Lambda_{n \in \mathbb{N}} \neg \text{pre}(\text{CEX}_n)$ 

• For an existential CTL sub-property:

- Verify the universal dual of the existential property and seek a set of counterexamples to serve as witnesses.
- A precondition  $\wp\langle I, \phi \rangle$  for a program location I is initialized to false.
- When a new counterexample is discovered, we refine  $\sqrt[6]{|, \phi\rangle}$  resulting in  $\sqrt[6]{|, \phi\rangle} = V_{n \in \mathbb{N}} \text{pre}(\text{CEX}_n)$