
FAIRNESS FOR INFINITE STATE SYSTEMS

Heidy Khlaaf
1
 Byron Cook

1
 Nir Piterman

2

University College London
1

University of Leicester
2

1

If a process requests a resource infinitely often, then it must
be granted infinitely often (resource starvation).

Verifying fairness:

Bridges the gap between trace-based and state-based
reasoning, allowing us to prove things like fair-termination.

When proving state-based properties, fairness is used to
model trace-based assumptions about the environment.

2

FAIRNESS

FAIRNESS

3

1 PPBlockInits();
2 while (i < Pdolen) {
3 DName = PPMakeDeviceName(…);
4 if (!DName) { break; }
5 RtlInitUnicodeString(&deviceName, DName);
6 status = IoCreateDevice(…);
7 if (STATUS_SUCCESS != status) {
8 Pdo[i] = NULL;
9 if (STATUS_OBJECT_NAME_COLLISION == status) {
10 ExFreePool(DName);
11 num++;
12 continue;
13 }
14 break;
15 } else {
16 i++;
17 }
18 }
19 num = 0;
20 PPUnblockInits();

EMPLOYING FAIRNESS

First known tool for symbolically proving fair-CTL properties
of infinite-state programs.

Solution is based on a reduction to existing techniques for
fairness- free CTL model checking via prophecy variables.

Prophecy variables are auxiliary variables whose values are
defined in terms of current program state and future
behavior.

4

Logic reasoning about propositions qualified in
terms of time.

Used as a specification language as it encompasses
safety, liveness, fairness, etc.

Most commonly used sub-logics are CTL (state
based) and LTL (trace based).

5

TEMPORAL LOGIC

6

CTL VS LTL

CTL

LTL

CTL

Reasoning about sets of states.

Reasoning about non-deterministic (branching) programs.

φ ::= α | ¬α | φ ∧ φ | φ ∨ φ | AXφ | AFφ | A[φWφ] | EXφ |
EGφ | E[φUφ]

A φ – All: φ has to hold on all paths starting from all initial states.

E φ – Exists: there exists at least one path starting from all initial
states where φ holds.

7

X φ – Next: φ has to hold at the next state.

G φ – Globally: φ has to hold on the all states along a path.

F φ – Finally: φ eventually has to hold.

φ1 U φ2 – Until: φ1 has to hold at least until at some
position φ2 holds. φ2 must be verified in the future.

φ1 W φ2 – Weak until: φ1 has to hold until φ2 holds.

8

CTL

LTL

Reasoning about sets of paths.

Reasoning about concurrent programs.

ψ ::= α | ψ∧ψ | ψ∨ψ | Gψ | Fψ | [ψWψ] | [ψUψ] .

Properties expressed in the universal fragment of CTL
(∀CTL) are easier to prove than LTL properties.

9

LTL

Can naturally express fairness: GF p ⇒ GF q.

Path based property not expressible in CTL.

When proving state-based CTL properties, we must often
use fairness to model path-based assumptions about the
environment.

When reasoning about concurrent environments, fairness is
used to abstract away the scheduler.

10

FAIR LIVENESS AG (BLOCK() ⇒ AF UNBLOCK())

11

1 PPBlockInits();
2 while (i < Pdolen) {
3 DName = PPMakeDeviceName(…);
4 if (!DName) { break; }
5 RtlInitUnicodeString(&deviceName, DName);
6 status = IoCreateDevice(…);
7 if (STATUS_SUCCESS != status) {
8 Pdo[i] = NULL;
9 if (STATUS_OBJECT_NAME_COLLISION == status) {
10 ExFreePool(DName);
11 num++;
12 continue;
13 }
14 break;
15 } else {
16 i++;
17 }
18 }
19 num = 0;
20 PPUnblockInits();

FAIR LIVENESS

12

Transition system contains a non-terminating execution.

However, if we only allow fair executions, then it is fair-terminating given that there
exists no infinite fair paths such that if τ1 occurs infinitely often then so does τ2.

CTL can express liveness properties such as AG(Block() ⇒ AF unblock()) but not
that it should hold only under fair paths.

Byron Cook, Heidy Khlaaf, and Nir Piterman 3

¸1 ¸2

·0 : Block()

·1 : i < Pdolen

·2 : i Ø Pdolen
iÕ = i

·3 : Unblock()

¸1 ¸2

·1 : i < Pdolen · r�

·2 : i Ø Pdolen · r�
iÕ = i

·3 : t · r�

r� : { (¬·1 · nÕ Æ n) ‚ (·1 · nÕ < n) ‚ ·2 } · n Ø 0

(a) (b)

Figure 2 Reducing a transition system with the CTL property AG(x = 0 æ AF(x = 1)) and the weak
fairness constraint GF ·2 æ GF m > 0. The original transition system is represented in (a), followed by
the application of our fairness reduction in (b).

that {(¬·2 · nÕ Æ n) ‚ (·2 · nÕ < n) ‚ m > 0 } · n Ø 0 holds. That is, we wish to restrict
our transition relations such that if ·2 is visited infinitely often, then the variable m must
be > 0 infinitely often. In ·2, the assignment mÕ = ú indicates that the variable m is being
assigned to a nondeterministic value, thus with every iteration of the loop, m acquires a
new value. In the original transition system, ·2 can be taken infinitely often given said non-
determinism, however in (b), such case is not possible. The transition ·2 in (b) now requires
that n be decreased on every iteration. Since n œ N, n cannot be decreased infinitely often,
causing the eventual restriction to the transition ·2. Such an incidence is categorized as a
finite path that is a prefix of some unfair infinite paths. As previously mentioned, such paths
are disregarded. This leaves only paths where the prophecy variable “guessed” correctly.
That is, it prophesized a value such that ·3 is reached, thus allowing our property to hold.
The transformed figure in (b) can then be employed by an existing CTL model checking
algorithm for infinite-state systems in order to verify the input CTL formula. We assume
that the CTL model checking algorithm returns an assertion characterizing all the states in
which a CTL formula holds. Tools such as Beyene et al. [1] and Cook et al. [3] support this
functionality.

3 Experiments
We discuss the results of preliminary experiments with a prototype implementation. We
applied our tool to several small programs: a classical mutual exclusion algorithm as well as
code fragments drawn from device drivers. Our implementation is based on an extension to
T2 [2, 7].2 As discussed in the related work, there are currently no known tools supporting
fair-CTL for infinite-state systems, thus we are not able to make experimental comparisons.

Fig. 3 shows the results of our experiments. In our experiments we verified liveness
properties, expressed in CTL. For each program we tested for both the success of the liveness
property with a fairness constraint and its failure due to either a lack of fairness or a presence
of a bug. A X represents the existence of a validity proof, while ‰ represents the existence
of a counterexample. We denote the lines of code in our program by LOC and the fairness
constraint by FC.

Note that the Bakery algorithm is meant to be performed on a multi-threaded program.
Due to our lack of support for concurrency, we have re-written the algorithm sequentially in

2 New versions of T2 are not publicly available due to legal constraints. However, we are currently
working through a release process with the Microsoft legal team.

FAIR CTL

A transition system M = (S, S0, R, L) and a fairness condition Ω
= (p,q) where p,q ⊆ S.

An infinite path π is unfair under Ω if states from p occur
infinitely often along π but states from q occur finitely often.
Otherwise, π is fair.

13

14

FAIR CTL

Fair CTL model checking restricts the checks to only fair paths:

1. M, si |=Ω+ Aφ iff φ holds in ALL fair paths.

2. M, si |=Ω+ Eφ iff φ holds in one or more fair paths.

Idea: Reduce fair CTL to fairness-free CTL via prophecy
variables.

Use the prophecy to encode a partition of fair from unfair
paths.

15

THE REDUCTION

n is decreased whenever a transition imposing p ∧ n′ < n is taken.

Since n ∈ N, n cannot decrease infinitely often, enforcing the eventual
invalidation of the transition p ∧ n′ < n.

RΩ would only allow a transition to proceed if q holds or ¬p ∧ n′ ≤ n
holds. That is, either q occurs infinitely often or p will occur finitely often.

2 Abstract: Fairness for Infinite-State Systems

Fair((S, S0, R, L), (p, q)) , (S�, S0
�, R�, L�)

where

S� = S ◊ N
Q

a
(¬p · nÕ Æ n)‚
(p · nÕ < n)‚

q

R

bR� = {((s, n), (sÕ, nÕ)) | (s, sÕ) œ R}·
S0

� = S0 ◊ N
L�(s, n) = L(s)

Figure 1 Fair takes a system (S, S0, R, L) and a fairness constraint (p, q) where p, q ™ S, and returns
a new system (S�, S0

�, R�, L�). Note that n Ø 0 is implicit, as n œ N.

1.1 Intuition
The procedure builds on a transformation of infinite-state programs by adding a prophecy
variable that truncates unfair paths. We start by presenting the transformation, followed
by an illustrative example adapted for using said transformation, and subsequently our
experimental results.

In Fig. 1, we propose a reduction Fair(M, �) that encodes an instantiation of the fairness
constraint within a transition system. A transition system is M = (S, S0, R, L), where S
is a countable set of states, S0 ™ S a set of initial states, R ™ S ◊ S a transition relation,
and L : S æ 2AP a labeling function associating a set of propositions with every state
s œ S. A trace or a path of a transition system is either a finite or infinite sequence
of states. When given a transition system (S, S0, R, L) and a strong fairness constraint
� = (p, q) where p, q ™ S, Fair(M, �) returns a new transition system that, through the
use of a prophecy variable n, infers all possible paths that satisfy the fairness constraint,
while avoiding all paths violating the fairness policy. Intuitively, n is decreased whenever
a transition imposing p · nÕ < n is taken. Since n œ N, n cannot decrease infinitely often,
thus enforcing the eventual invalidation of the transition p · nÕ < n. Therefore, R� would
only allow a transition to proceed if q holds or ¬p · nÕ Æ n holds. That is, either q occurs
infinitely often or p will occur finitely often. Note that a q-transition imposes no constraints
on nÕ, which e�ectively resets nÕ to an arbitrary value.

The conversion of M with fairness constraint � to Fair(M, �) involves the truncation of
paths due to the wrong estimation of the number of p-s until q. This means that Fair(M, �)
can include (maximal) finite paths that are prefixes of unfair infinite paths. It follows that
when model checking CTL we have to ensure that these paths do not interfere with the
validity of our model checking procedure. Hence, we have to distinguish between maximal
(finite) paths that occur in M and those introduced by our reduction. This is done through
adding a proposition t to mark all original “valid” termination states prior to the reduction
in Fig. 1, followed by adjusting the CTL specification through a transformation.

2 Illustrative Example
We first provide high-level understanding of our approach through an example.

Consider the example in Fig. 2 for the CTL property AG(x = 0 æ AF(x = 1)) and
the fairness constraint GF ·2 æ GF m > 0 for the initial transition system introduced in
(a). That is, we are attempting to prove that for all states, when x = 0 then we must
always eventually reach a state such that x = 1 under the fairness constraint that if the
transition ·2 occurs infinitely often, then m must be greater than 0 infinitely often. We
demonstrate the resulting transformation for this infinite-state program which allows us to
reduce fair model checking to model checking. By applying Fair(M, �) from Fig. 1, we
obtain (b) where each original transition, ·2, ·3, and ·4, are adjoined with restrictions such

TRANSFORMATION

Fair(M,Ω) can include finite paths that are prefixes of unfair infinite paths due
to the wrong estimation of the number of p-s until q.

Must ensure that these paths do not interfere with the validity of our model
checking procedure.

We distinguish between finite paths that occur in M and those introduced by
our reduction.

Add a self-loop with proposition t to mark all original “valid” termination states.

16

`1 `2

⌧1 : x0 = 0

⌧2 : m 0
m

0 = ⇤

⌧3 : m > 0

⌧4 : x0 = 1

`1 `2

⌧1 : x0 = 0

⌧2 : m 0 ^
r⌦

m

0 = ⇤

⌧3 : m > 0 ^ r⌦

⌧4 : x0 = 1
r⌦

r⌦ : { (¬⌧2 ^ n

0 n) _ (⌧2 ^ n

0
< n) _m > 0 } ^ n � 0

(a) (b)

Fig. 4: Reducing a transition system with the CTL property AG(x = 0 ! AF(x = 1))
and the weak fairness constraint GF ⌧2 ! GF m > 0. The original transition system is
represented in (a), followed by the application of our fairness reduction in (b).

eventual restriction to the transition ⌧2. Such an incidence is categorized as a
finite path that is a prefix of some unfair infinite paths. As previously mentioned,
we will later discuss how such paths are disregarded. This leaves only paths where
the prophecy variable “guessed” correctly. That is, it prophesized a value such
that ⌧3 is reached, thus allowing our property to hold.

3.2 Prefixes of Infinite Paths

We now elaborate on the transformations utilized to distinguish between the
maximal (finite) paths that occur in M , and those which are prefixes of unfair
infinite paths introduced by our reduction. Consider a transition system M =
(S, S0, R, L) and let ' be a CTL formula. Let t be an atomic proposition not
appearing in L or '. We define the transformation to mark “valid” termination
states as Term(M, t) = (S, S0, R

0
, L

0), where R

0 and L

0 are as follows:

R

0 = R [{(s, s) | 8s0.(s, s0) /2 R} L

0(s) =

(
L(s) [{t}, if 8s0.(s, s0) /2 R

L(s), otherwise

That is, we eliminate all finite paths in Term(M, t) by instrumenting self loops
and adding the proposition t on all terminal states. We now adjust the CTL
formula ' that we wish to verify on M . Recall that t does not appear in '. Now
let Term(', t) denote the CTL formula transformation in Fig. 5.

The combination of the two transformations maintains the validity of a CTL
formula in a given system (proof is included in Appendix B).

Theorem 1. M |=⌦+ ' , Term(M, t) |=⌦+ Term(', t)

Proof Sketch. We show that every fair path of Term(M, t) corresponds to a
maximal path in M and vice versa. The proof then proceeds by induction on
the structure of the formula.

6

TRANSFORMATION

Adjust the CTL specification to accommodate for this change.

M |=Ω+ φ ⇔ Term(M, t) |=Ω+ Term(φ, t)

17

Term(↵, t) ::= ↵

Term('1 ^ '2, t) ::= Term('1, t) ^Term('2, t)
Term('1 _ '2, t) ::= Term('1, t) _Term('2, t)

Term(AX', t) ::= t _ AX(Term(', t))
Term(AF', t) ::= AFTerm(', t)

Term(A['1W'2], t) ::= A[Term('1, t) W Term('2, t)]
Term(EX', t) ::= ¬t ^ EX(Term(', t))
Term(EG', t) ::= EGTerm(', t)

Term(E['1U'2], t) ::= E[Term('1, t) U Term('2, t)]

Fig. 5: Transformation Term(', t).

, For existential formulas, a witness for an existential formula in M is trans-
lated to a witness to the same formula in Term(M, t), and vice versa. For
universal formulas, an arbitrary path in Term(M, t) is translated back to a
path in M and satisfaction of the path formula on the latter implies satis-
faction on the former, and vice versa.

After having marked the “valid” termination points in M by using the trans-
formation Term(M, t), we must ensure that our fair-CTL model-checking pro-
cedure ignores “invalid” finite paths in Fair(M,⌦). The finite paths that need
to be removed from consideration are those that arise by wrong prediction of
the prophecy variable n. The formula term = AFAX false holds in a state s i↵ all
paths from s are finite. We denote its negation EGEX true by ¬term. Intuitively,
when considering a state (s, n) of Fair(M,⌦), if (s, n) satisfies term, then (s, n)
is part of a wrong prediction. If (s, n) satisfies ¬term, then (s, n) is part of a
correct prediction. Further on, we will set up our model checking technique such
that universal path formulas ignore violations that occur on terminating paths
(which correspond to wrong predictions) and existential path formulas use only
non-terminating paths (which correspond to correct predictions).

3.3 Fair-CTL Model Checking

To adapt our reduction Fair(M,⌦) to handle full CTL model checking, we
introduce our model-checking procedure in Fig. 6. Our procedure employs an
existing CTL model checking algorithm for infinite-state systems. We assume
that the CTL model checking algorithm returns an assertion characterizing all
the states in which a CTL formula holds. Tools such as Beyene et al. [2] and
Cook et al. [7] support this functionality. We denote such CTL verification tools
by CTL(M,'), where M is a transition system and ' is some CTL formula.

Our procedure adapting Fair(M,⌦) is presented in Fig. 6. Given a transi-
tion system M , a fairness constraint ⌦, and a CTL formula ', FairCTL returns
an assertion characterizing the states in which ' fairly holds. Initially, our pro-
cedure is called by Verify in Fig. 7 where M and ' are initially transformed
by Term(M, t) and Term(', t) discussed in Section 3.2. That is, Term(M, t)
marks all “valid” termination states in M to distinguish between maximal (fi-
nite) paths that occur in M and those introduced by our reduction. Term(', t)

7

FAIR TERMINATION - REVISITED

18

CTL property AG(lock() ⇒ AF unlock()).

Strong fairness constraint Ω = (τ1, τ2).

Byron Cook, Heidy Khlaaf, and Nir Piterman 3

¸1 ¸2

·1 : m Æ 0

·2 : m > 0
mÕ = m

¸1 ¸2

·1 : m Æ 0 ·
r�

·2 : m > 0 · r�
mÕ = m

·3 : t
r�

r� : { (¬·1 · nÕ Æ n) ‚ (·1 · nÕ < n) ‚ ·2 } · n Ø 0

(a) (b)

Figure 2 Reducing a transition system with the CTL property AG(x = 0 æ AF(x = 1)) and the weak
fairness constraint GF ·2 æ GF m > 0. The original transition system is represented in (a), followed by
the application of our fairness reduction in (b).

that {(¬·2 · nÕ Æ n) ‚ (·2 · nÕ < n) ‚ m > 0 } · n Ø 0 holds. That is, we wish to restrict
our transition relations such that if ·2 is visited infinitely often, then the variable m must
be > 0 infinitely often. In ·2, the assignment mÕ = ú indicates that the variable m is being
assigned to a nondeterministic value, thus with every iteration of the loop, m acquires a
new value. In the original transition system, ·2 can be taken infinitely often given said non-
determinism, however in (b), such case is not possible. The transition ·2 in (b) now requires
that n be decreased on every iteration. Since n œ N, n cannot be decreased infinitely often,
causing the eventual restriction to the transition ·2. Such an incidence is categorized as a
finite path that is a prefix of some unfair infinite paths. As previously mentioned, such paths
are disregarded. This leaves only paths where the prophecy variable “guessed” correctly.
That is, it prophesized a value such that ·3 is reached, thus allowing our property to hold.
The transformed figure in (b) can then be employed by an existing CTL model checking
algorithm for infinite-state systems in order to verify the input CTL formula. We assume
that the CTL model checking algorithm returns an assertion characterizing all the states in
which a CTL formula holds. Tools such as Beyene et al. [2] and Cook et al. [4] support this
functionality.

3 Experiments
We discuss the results of preliminary experiments with a prototype implementation. We
applied our tool to several small programs: a classical mutual exclusion algorithm as well
as code fragments drawn from device drivers. Our implementation is based on an extension
to T2 [3, 8].2 Despite theoretical contributions to the topic of fair CTL for infinite-state
programs [1], there are no known tools supporting fair CTL for infinite-state programs. We
are thus unable to make experimental comparisons.

Fig. 3 shows the results of our experiments. In our experiments we verified liveness
properties, expressed in CTL. For each program we tested for both the success of the liveness
property with a fairness constraint and its failure due to either a lack of fairness or a presence
of a bug. A X represents the existence of a validity proof, while ‰ represents the existence
of a counterexample. We denote the lines of code in our program by LOC and the fairness
constraint by FC.

Note that the Bakery algorithm is meant to be performed on a multi-threaded program.

2 New versions of T2 are not publicly available due to legal constraints. However, we are currently
working through a release process with the Microsoft legal team.

Byron Cook, Heidy Khlaaf, and Nir Piterman 3

¸1 ¸2

·0 : Block()

·1 : i < Pdolen

·2 : i Ø Pdolen
iÕ = i

·3 : Unblock()

¸1 ¸2

·0 : Block()

·1 : i < Pdolen · r�

·2 : i Ø Pdolen · r�
iÕ = i

·3 : t · r�
Unblock()

r� : { (¬·1 · nÕ Æ n) ‚ (·1 · nÕ < n) ‚ ·2 } · n Ø 0

Figure 2 Reducing a transition system with the CTL property AG(x = 0 æ AF(x = 1)) and the weak
fairness constraint GF ·2 æ GF m > 0. The original transition system is represented in (a), followed by
the application of our fairness reduction in (b).

that {(¬·2 · nÕ Æ n) ‚ (·2 · nÕ < n) ‚ m > 0 } · n Ø 0 holds. That is, we wish to restrict
our transition relations such that if ·2 is visited infinitely often, then the variable m must
be > 0 infinitely often. In ·2, the assignment mÕ = ú indicates that the variable m is being
assigned to a nondeterministic value, thus with every iteration of the loop, m acquires a
new value. In the original transition system, ·2 can be taken infinitely often given said non-
determinism, however in (b), such case is not possible. The transition ·2 in (b) now requires
that n be decreased on every iteration. Since n œ N, n cannot be decreased infinitely often,
causing the eventual restriction to the transition ·2. Such an incidence is categorized as a
finite path that is a prefix of some unfair infinite paths. As previously mentioned, such paths
are disregarded. This leaves only paths where the prophecy variable “guessed” correctly.
That is, it prophesized a value such that ·3 is reached, thus allowing our property to hold.
The transformed figure in (b) can then be employed by an existing CTL model checking
algorithm for infinite-state systems in order to verify the input CTL formula. We assume
that the CTL model checking algorithm returns an assertion characterizing all the states in
which a CTL formula holds. Tools such as Beyene et al. [1] and Cook et al. [3] support this
functionality.

3 Experiments
We discuss the results of preliminary experiments with a prototype implementation. We
applied our tool to several small programs: a classical mutual exclusion algorithm as well as
code fragments drawn from device drivers. Our implementation is based on an extension to
T2 [2, 7].2 As discussed in the related work, there are currently no known tools supporting
fair-CTL for infinite-state systems, thus we are not able to make experimental comparisons.

Fig. 3 shows the results of our experiments. In our experiments we verified liveness
properties, expressed in CTL. For each program we tested for both the success of the liveness
property with a fairness constraint and its failure due to either a lack of fairness or a presence
of a bug. A X represents the existence of a validity proof, while ‰ represents the existence

2 New versions of T2 are not publicly available due to legal constraints. However, we are currently
working through a release process with the Microsoft legal team.

19

ECTL

M, m0 |=Ω+ EG(¬p ∧ EF r) for Ω = (p,q).

From si there is a path that eventually reaches s0, where it satisfies r, and then
continues to s−1, where p does not hold.

The paths which satisfy EG(¬p ∧ EF r) are fair.

However, system does not hold under Fair(M,Ω).

m0 m1 m2 m3

s�1 s0

r, p

s1

p

s2

p

s3

p

Fig. 9: A system showing that ECTL model checking is more complicated.

Corollary 2. For every ACTL formula ' we have

M |=⌦+ ' , Fair(Term(M, t),⌦) |= NTerm(Term(', t)) _ term

Proof. As Term(M, t) produces a transition system with no terminating states
and Term(', t) converts an ACTL formula to an ACTL formula, the proof then
follows from Theorem 1 and Theorem 3.

The direct reduction presented in Theorem 3 works well for ACTL but does
not work for existential properties. We now demonstrate why Fig. 3 is not
su�cient to handle existential properties alone. Consider the transition sys-
tem M in Figure 9, the fairness constraint ⌦ = {(p, q)}, and the property
EG(¬p ^ EFr). One can see that M,m0 |=⌦+ EG(¬p ^ EFr). Indeed, from each
state si there is a unique path that eventually reaches s0, where it satisfies r, and
then continues to s�1, where p does not hold. As the path visits finitely many p

states it is clearly fair. So, every state mi satisfies EFr by considering the path
mi, si, si�1, . . . , s0, s�1, Then the fair path m0,m1, . . . satisfies EG(¬p^EFr).
On the other hand, it is clear that no other path satisfies EG(¬p ^ EFr).

Now consider the transformation Fair(M,⌦) and consider model checking
of EG(¬p ^ EFr). In Fair(M,⌦) there is no path that satisfies this property.
To see this, consider the transition system Fair(M,⌦) and a value n 2 N.
For every value of n the path (m0, n), (m1, n), (m2, n), . . . is an infinite path in
Fair(M,⌦) as it never visits p. This path does not satisfy EG(¬p^EFr). Consider
some state (mj , nj) reachable from (m0, n) for j > 2n. The only infinite paths
starting from (mj , nj) are paths that never visit the states si. Indeed, paths that
visit si are terminated as they visit too many p states. Thus, for every n 2 N
we have (m0, n) 6|= EG(¬p ^ EFr). Finite paths in Fair(M,⌦) are those of the
form (m0, n0), . . . , (mi, ni), (si, ni+1), Such paths clearly cannot satisfy the
property EG(¬p ^ EFr) as the states si do satisfy p. Allowing existential paths
to ignore fairness is clearly unsound. We note also that in Fair(M,⌦) we have
(m0, n) |= NTerm(AF(p _ AG¬r)).

Reducing Fair Termination to Termination. Given the importance of termina-
tion as a system property, we emphasize the reduction of fair termination to
termination. Note that termination can be expressed in ACTL as AFAX false,
thus the results in Corollary 2 allow us to reduce fair termination to model
checking (without fairness). Intuitively, a state that satisfies AX false is a state
with no successors. Hence, every path that reaches a state with no successors

11

20

FAIR CTL

As long as a new prophecy variable is introduced for each temporal sub-
formula, the reduction can still be applied.

Recurse over each sub-formula, and add a non-termination (Eφ) or
termination (Aφ) clause, allowing us to ignore finite paths that are prefixes
of unfair infinite-paths.

Apply our reduction Fair(M, Ω) and run with φ on an existing CTL model
checker which returns an assertion a characterizing the states in which φ
holds.

Eφ′→ ∃ n ≥ 0 . a

 Aφ′→∀ n ≥ 0 . a

21

FAIR CTL
1 let FairCTL(M,⌦,') : assertion =

2

3 match(') with

4 | Q '1 OP '2

5 | '1 bool OP '2 !
6 a'1 = FairCTL(M,⌦,'1);
7 a'2 = FairCTL(M,⌦,'2)
8 | Q OP '1 !
9 a'1 = FairCTL(M,⌦,'1)

10 | ↵ !
11 a'1 = ↵

12

13 match(') with

14 | E '1U'2 !
15 '

0 = E[a'1U(a'2 ^ ¬term)]
16 | E G'1 !
17 '

0 = EG(a'1 ^ ¬term)
18 | E X'1 !
19 '

0 = EX(a'1 ^ ¬term)
20 | A '1W'2 !
21 '

0 = A[a'1W(a'2 _ term)]

22

23 | A F'1 !
24 '

0 = AF(a'1 _ term)
25 | A X'1 !
26 '

0 = AX(a'1 _ term)
27 | '1 bool OP '2 !
28 '

0 = a'1 bool OP a'2

29 | ↵ !
30 '

0 = a'1

31

32 M

0 = Fair(M,⌦)

33 a = CTL(M 0
,'

0)
34

35 match(') with

36 | E '

0 !
37 return 9n � 0 . a

38 | A '

0 !
39 return 8n � 0 . a

40 | !
41 return a

Fig. 6: Our procedure FairCTL(M,⌦,') which employs both an existing CTL model
checker and the reduction Fair(M,⌦). An assertion characterizing the states in which
' holds under the fairness constraint ⌦ is returned.

allows us to disregard all aforementioned finite paths, as we only consider infinite
paths which correspond to a fair path in the original system.

Our procedure then begins by recursively enumerating over each CTL sub-
property, wherein we attain an assertion characterizing all the states in which
the sub-property holds under the fairness constraint ⌦. These assertions will
subsequently replace their corresponding CTL sub-properties as shown on lines
15,17,19, and so on. A new CTL formula '

0 is then acquired by adding an ap-
propriate termination or non-termination clause (lines 13-30). This clause allows
us to ignore finite paths that are prefixes of some unfair infinite paths. Recall
that other finite paths were turned infinite and marked by Term(M, t).

1 let Verify(M,⌦,') : bool =

2

3 a = FairCTL(Term(M, t),⌦, Term(', t))
4 return S0) a

Fig. 7: CTL model checking procedure Verify, which utilizes the subroutine in Fig. 6
to verify if a CTL property ' holds under the fairness constraints ⌦ for a transition
system M .

8

FairCTL(M,Ω,φ) employs an existing CTL model checker and the reduction
Fair(M, Ω). An assertion characterizing the states in which φ holds under the
fairness constraint Ω is returned.

EXPERIMENTS

22

Program LOC Property FC Time(s) Result

WDD1 20 AG(BlockInits()) AF UnblockInits()) Yes 14.4 X
WDD1 20 AG(BlockInits()) AF UnblockInits()) No 2.1 �

WDD2 374 AG(AcqSpinLock()) AF RelSpinLock()) Yes 18.8 X
WDD2 374 AG(AcqSpinLock()) AF RelSpinLock()) No 14.1 �

WDD3 58 AF(EnCritRegion()) EG ExCritRegion()) Yes 12.5 �

WDD3 58 AF(EnCritRegion()) EG ExCritRegion()) No 9.6 X
WDD4 302 AG(added socket > 0) AFEG STATUS OK) Yes 30.2 X
WDD4 302 AG(added socket > 0) AFEG STATUS OK) No 72.4 �

Bakery 37 AG(Noncritical) AF Critical) Yes 2.9 X
Bakery 37 AG(Noncritical) AF Critical) No 16.4 �

Prod-Cons 30 AG(pi > 0) AF qi <= 0) Yes 18.5 X
Prod-Cons 30 AG(pi > 0) AF qi <= 0) No 5.5 �

Chain 48 AG(x � 8) AF x = 0) Yes 1.8 X
Chain 48 AG(x � 8) AF x = 0) No 4.7 �

Fig. 10. Experimental evaluations of infinite-state programs such as Windows device
drivers (WDD) and concurrent systems, which were reduced to non-deterministic se-
quential programs via [7]. Each program is tested for both the success of a branching-
time liveness property with a fairness constraint and its failure due to a lack of fairness.
A X represents the existence of a validity proof, while � represents the existence of a
counterexample. We denote the lines of code in our program by LOC and the fairness
constraint by FC. There exist no competing tools available for comparison.

enforcing properties to hold that previously did not. Thus, our tool allows us to
both prove and disprove the negation of each of the properties.

7 Discussion

We have described the first-known fair-CTL model checking technique for integer
based infinite-state programs. Our approach is based on a reduction to existing
techniques for fairness-free CTL model checking. The reduction relies on utilizing
prophecy variables to introduce additional information into the state-space of the
program under consideration. This allows fairness-free CTL proving techniques
to reason only about fair executions. Our implementation seamlessly builds upon
existing CTL proving techniques, resulting in experiments which demonstrate
the practical viability of our approach.

Furthermore, our technique allows us to bridge between linear-time (LTL)
and branching-time (CTL) reasoning. Not only so, but a seamless integration be-
tween LTL and CTL reasoning may make way for further extensions supporting
CTL* verification of infinite-state programs [16]. We hope to further examine
both the viability and practicality of such an extension.

We include the definition of fair-CTL considering only infinite paths and show
how to change transition systems to use either definition in our technical report
which can be acquired at [9]. Additionally, we show how to modify the proof
system to incorporate an alternative approach to CTL verification advocated by
Cook & Koskinen [12].

RECAP

Introduced the first known method for symbolically proving fair-CTL
properties of (infinite-state) integer programs.

Solution is based on a reduction which allows the use and integrate with
any off-the-shelf CTL tool

 Use prophecy variables in the reduction for the purpose of symbolically
partitioning fair from unfair executions.

Implemented as an extension to T2, a CTL model checker which returns
assertions characterizing the states in which a property holds.

23

