FAIRNESS FOR INFINIT

STATE SYSTEMS

| | 2
Heidy Khlaaf Byron Cook Nir Prterman

|
University College Londgn

University of Leicester

FAIRNESS

o | a process requests a resource infinitely often, then it must
be granted infinrtely often (resource starvation).

» Verifying fairness:

» Bridges the gap between trace-based and state-based
reasoning, allowing us to prove things like fair-termination.

» When proving state-based properties, fairness is used to
model trace-based assumptions about the environment.

FAIRNESS

1 PPBlockInits();

2 while (i < Pdolen) {

3 DName = PPMakeDeviceName(...);

4 if (!DName) { break; }

5 RtlInitUnicodeString(&deviceName, DName) ;
6 status = IoCreateDevice(..);

7 if (STATUS SUCCESS != status) {

8 Pdo[i] = NULL;

9 if (STATUS OBJECT NAME COLLISION == status) {
10 ExFreePool (DName) ;

11 num++;

12 continue;

13 }

14 break;

15 } else {

16 i++;

17 }

18 }

19 num = O0;

20 PPUnblockInits();

-MPLOYING FAIRNESS

o First known tool for symbolically proving fai~CTL properties
of infinite-state programs.

» Solution Is based on a reduction to existing techniques for
fairness- free CTL model checking via prophecy variables.

» Prophecy variables are auxiliary variables whose values are
defined In terms of current program state and future

behavior;

TEMPORAL LOGIC

» Logic reasoning about propositions qualified in
terms of time.

» Used as a specification language as it encompasses

safety, liveness, fairness, etc.

o Most commonly used sub-logics are CTL (state
pased) and LTL (trace based).

CTLVS LTL

(3, (59 (s (8) (59 [(s) CTL
@@@@@@@@@@@@

LTL

CTL

» Reasoning about sets of states.

» Reasoning about non-deterministic (branching) programs.

c QX[TR|PAQ[PVO|AXQ[AFQ [A[@WQ] | EX® |
cG@ | E[pUp]

o A @ —All: @ has to hold on all paths starting from all initial states.

o E @ — Exists: there exists at least one path starting from all inrtial
states where (p holds.

CTL

o X (p — Next: ¢p has to hold at the next state.
o G — Globally: ¢ has to hold on the all states along a path.
o F — Finally: @ eventually has to hold.

o (| U @y —Until: | has to hold at least until at some
position P holds. (P, must be verified In the future.

o (P W 2 —Weak until: @ has to hold until ¢p2 holds.

8

LIL

» Reasoning about sets of paths.

o Reasoning about concurrent programs.

* Y=o [WA [YV [GY [FY | [QWY] | [WUY].

» Properties expressed in the universal fragment of CTL
(VCTL) are easier to prove than LTL properties.

LIL

»Can naturally express fairness: G- p = GF q.

»Path based property not expressible in CTL.

*\When proving state-based CTL properties, we must often
use fairness to model path-based assumptions about the
environment.

*\When reasoning about concurrent environments, fairness Is
used to abstract away the scheduler.

FAIR LIVENESS ac sLock) = ar unsLockp)

1 PPBlockInits();

2 while (i < Pdolen) {

3 DName = PPMakeDeviceName(...);

4 if (!DName) { break; }

5 RtlInitUnicodeString(&deviceName, DName) ;
6 status = IoCreateDevice(..);

7 if (STATUS SUCCESS != status) {

8 Pdo[i] = NULL;

9 if (STATUS OBJECT NAME COLLISION == status) {
10 ExFreePool (DName) ;

11 num++;

12 continue;

13 }

14 break;

15 } else {

16 i++;

17 }

18 }

19 num = O0;

20 PPUnblockInits();

FAIR LIVENESS

7o : 1 > Pdolen

i’ =14

73 : Unblock ()

To : Block ()

71+ 1 < Pdolen

Transition system contains a hon-terminating execution.

However, If we only allow fair executions, then it Is fair-terminating given that there
exists no Iinfinite fair paths such that If T, occurs infinitely often then so does T,.

o CTL can express liveness properties such as AG(Block() = AF unblock()) but not
that it should hold only under fair paths.

FAIR CTL

» A transition system M = (S, Sy, R L) and a fairness condition Q
= (p,q) where p,q C S.

* An infinite path TT is unfair under Q) if states from p occur
infinitely often along TT but states from g occur finitely often.
Otherwise, TT Is fair.

FAIR CTL

» Fair CTL model checking restricts the checks to only fair paths:
. M, si |[=Q+ A iff ¢ holds in ALL fair paths.
2. M, si |=Q+ E iff @ holds in one or more fair paths.

o |dea: Reduce fair CTL to fairness-free CTL via prophecy
variables.

» Use the prophecy to encode a partition of fair from unfair
haths.

TH

[11
0
[11

DUCTION

FAIR((Sa SOaRa L)7(p7 Q)) = (SQ7S§O)7RQ7LQ)

where
Sq=85x%xN (=pAn <n)Vv
Ra = {((s,n),(s",n')) | (s,58") € R}A (pAn' <n)V
Sg = SYx N q

La(s,n) = L(s)

» nis decreased whenever a transition imposing p A n” < n is taken.

o Since n € N, n cannot decrease Infinitely often, enforcing the eventual
invalidation of the transition p A n" <n.

» R would only allow a transition to proceed if g holds or 7p A n" < n
holds. That is, either g occurs infinrtely often or p will occur finitely often.

15

TRANSFORMATION

L(s)U{t}, ifVs'.(s,s')¢ R
L(s), otherwise

R ' =RU{(s,s) | Vs'.(s,s") ¢ R} L'(s)= {

o FairM,C2) can include finite paths that are prefixes of unfair infinite paths due
to the wrong estimation of the number of p-s until g.

» Must ensure that these paths do not interfere with the validity of our model
checking procedure.

o We distinguish between finite paths that occur in M and those introduced by
our reduction,

o Add a self-loop with proposition t to mark all original “valid” termination states.

TRANSFORMATION

TERM(a, t
TERM(QOl N 2,

) =«
t) ::= TERM(p1,t) A TERM(pa2,t)
TERM(p1 V @a,t) ::= TERM(p1,t) V TERM(p2,t)
TERM(AXp,t) := 1tV AX(TERM(p, 1))
TERM(AFp,t) ::= AFTERM((p, t)

TERM(A[p1 Wp2l,t) ::= A[TERM(p1,t) W TERM(p2, t)]
TERM(EXp,t) ::= =t A EX(TERM(¢p, t))
TERM(EGyp, t) ::= EGTERM(¢p, t)

TERM(E[p1Up2],t) ::= E[TERM(p1,t) U TERM (a2, t)]

o Adjust the CTL specification to accommodate for this change.

o M|=q+@ & lerm(M, 1) |=q+ lerm(cp, t)

FAIR TERMINATION - REVISIT

[T
_

7o : 1 > Pdolen A rq

i’ =i
61 >@

71 : 1 < Pdolen A rg 73 : TATQ
Unblock ()

70 : Block ()

ro:{ (-1 An <n) V(mnAn <n) Ve }An>0

o CTL property AG(lock() = AF unlock()).

o Strong fairness constraint Q = (T|, T2

~CTL

S0 S1 S2 S3
< _______
r,p p p p

o M,mp |=q+EG(7p A EF 1) for Q = (p,q).

o From s; there Is a path that eventually reaches sy, where 1t satisfies r, and then
continues to s—;, where p does not hold.

o [he paths which satisty EG(7p A EF r) are fair.

» However, system does not hold under Fair(M,€2).

19

FAIR CTL

o As long as a new prophecy variable is introduced for each temporal sub-
formula, the reduction can still be applied.

» Recurse over each sub-formula, and add a non-termination (E¢) or
termination (A) clause, allowing us to ignore finite paths that are prefixes

of unfair infinrte-paths.

» Apply our reduction Fair(M, Q) and run with @ on an existing CTL model
checker which returns an assertion a characterizing the states in which ¢
holds.

o E@®>3INn=0.a

A A(p—}v n=>0.a

20

FAIR CTL

1 let FAIRCTL(M, (2,¢) : assertion = 22

2 23 | A Fp1 —

3 match(yp) with 2/ ¢ = AF(ay, V term)
4 | Q Y1 OP ©2 25 | A XQ01 —

5 | 1 bool OP o — 26 @ = AX(ay, V term)
6 a,, = FAIRCTL(M, 2,¢1); 27 | 1 ool 0P 3 —

7 Ay, = FAIRCTL(M, (2, p2) 28 @ = ay, bool 0P agp,
8 | Q OP ¢1 — 29 | o —

9 a,, = FAIRCTL(M, 2, p1) 30 @ = ay,

10 | @ — 31

11 ap, = 32 M’ = Fair(M,)

12 33 a = CTL(M', ")

13 match(y) with 34

14 | E p1Ups — 85 match(p) with

15 ¢ = FElay, U(agp, A —term)] 36 | E ¢ —

16 | E Gp1 — 87 return In >0 . a
17 ¢ = EG(ay, N\ —term) 38 | A ¢ —

18 | E X1 — 39 return Vn >0 . a
19 ¢ = EX(ay, N —term) 40 | - —

20 | A p1Wyps — 41 return a

21 @ = Alay, W(ae, Vterm)]

o FairCTLIM, Q@) employs an existing CTL model checker and the reduction
Fair(M, €0). An assertion characterizing the states in which ¢ holds under the
fairness constraint QQ is returned.

2

- XP

-RIM

-NTS

Program [LOC|Property FC|Time(s) |Result
WDD1 20{AG(BlockInits() = AF UnblockInits()) |Yes 14.4| Vv
WDD1 20{AG(BlockInits() = AF UnblockInits()) |[No 2.1 x
WDD2 374|AG(AcqgSpinLock() = AF RelSpinLock()) |Yes 18.8| Vv
WDD2 374|AG(AcgSpinLock() = AF RelSpinLock()) |No 14.1| x
WDD3 58| AF(EnCritRegion() = EG ExCritRegion())|Yes 12.5| x
WDD3 58 |AF(EnCritRegion() = EG ExCritRegion())|No 9.6| V
WDD4 302|AG(added_socket > 0 = AFEG STATUS_OK) | Yes 30.2| V
WDD4 302|AG(added_socket > 0 = AFEG STATUS_0K) |No 72.4| X
Bakery 37|AG(Noncritical = AF Critical) Yes 29| V
Bakery 37|AG(Noncritical = AF Critical) No 16.4| x
Prod-Cons| 30|AG(p; > 0 = AF q; <= 0) Yes 18.5| VvV
Prod-Cons| 30|AG(p; > 0 = AF q; <= 0) No 5.5| x
Chain 48|AG(x > 8 = AF x = 0) Yes 1.8 V
Chain 48|AG(x > 8 = AF x = 0) No 4.7 x

22

—CAP

Introduced the first known method for symbolically proving fai=CTL
properties of (infinite-state) integer programs.

Solution Is based on a reduction which allows the use and integrate with
any off-the-shelf CTL tool

Use prophecy variables in the reduction for the purpose of symbolically
partitioning fair from unfair executions.

Implemented as an extension to T2, a CTL model checker which returns
assertions characterizing the states in which a property holds.

23

