
T2: TEMPORAL PROPERTY VERIFICATION
Heidy Khlaaf

1

Marc Brockschmidt
2
 Byron Cook

1
 Samin Ishtiaq

2
 Nir Piterman

3

University College London
1

Microsoft Research
2

University of Leicester
3

1

OVERVIEW

First open-source, public release of T2 (TERMINATOR 2), a
follow-up of the TERMINATOR project.

Supports automatic verification of temporal-logics (CTL,
Fair-CTL, CTL*) and user-provided liveness and safety
properties over (integer) infinite-state systems.

Input can be provided directly in C or other languages via
support of the LLVM compiler framework.

2

OVERVIEW

3

Verification of temporal logic (reasoning about
propositions qualified in terms of time).

Encompasses safety, termination, liveness, fairness,
etc.

Supported sub-logics are: CTL, Fair-CTL,
CTL*.

4

T2: FEATURES

• T2 is the only tool that can handle automated
verification of Fair-CTL and CTL* for infinite-
state(integer) systems.

• QARMC/HSF handles CTL but requires horn
clause constraints to be provided by the user as
input.

5

T2: FEATURES

6

CTL*

CTL

LTL

7

CTL*

Eventually this session will end.

AF (Session ends).

There exists a sequence of actions that infinitely
often leads to the coffee break table with pastries.

EGF (Coffee Table && Pastries)

8

T2: FEATURES

“Fairness for Infinite-State Systems”, TACAS’15  
“On Automation of CTL* Verification for Infinite-State Systems”, CAV’15

Reduce the verification of CTL* and Fair-CTL to a CTL Model-
Checking problem.

Via prophecy variables and program instrumentation.

“Faster Temporal Reasoning for Infinite-State Programs”, FMCAD’14

CTL can be reduced to a termination and safety problem via
program instrumentation.

9

T2: BACK-END

10

T2: BACK-END

CTL*/Fair-CTL CTL Termination Safety

Builds upon safety proving procedures: Impact, Z3, and
Spacer.

Termination back-end constructs a termination proof
through a sequence of safety queries and ranking function
synthesis steps.

“Ramsey vs. lexicographic termination proving”, TACAS’13

“Better termination proving through cooperation”, CAV’13

11

T2: BACK-END

12

T2: BACK-END

Preproc.

Instrumentation

Safety RF Synth. RS Synth.

Termination Nontermination

Fail

Simplif.

Counterex.

Safe

Fail

Refine

Fail

Succ.

Fig. 2: Flowchart of the T2 termination proving procedure

safety proving algorithm, and furthermore can use safety proving techniques im-
plemented in Z3, e.g. generalized property directed reachability (GPDR) [16]
and Spacer [17]. For this, we convert our transition systems into sets of linear
Horn clauses with constraints in linear arithmetic, in which one predicate p` is
introduced per program location `. For example, the transition from `

2

to `

2

in
Fig. 1(b) is represented as 8x, k, x0 : p`2(x

0
, k) p`2(x, k) ^ x

0 = x� k.

Proving Termination.A schematic overview of our termination proving procedure
is displayed in Fig. 2. In the initial Instrumentation phase (described in [3]), the
input program is modified so that a termination proof can be constructed by a
sequence of alternating safety queries and rank function synthesis steps. This
reduces the check of a speculated (possibly lexicographic) rank function f for
a loop to an assertion that the value of f after one loop iteration is smaller
than before that iteration. If the speculated termination argument is insu�cient,
our Safety check fails, and the returned counterexample is used to refine the
termination argument in step RF Synth. Here, we follow the strategy presented in
[9] to construct a lexicographic termination argument, extending a standard linear
rank function synthesis procedure [21].6 The synthesis procedure is implemented
as constraint solving via Z3. Note that the overall procedure is independent of
the used safety prover and rank function synthesis.

In our Preprocessing phase, a number of standard program analysis techniques
are used to simplify the remaining proof. Most prominently, this includes the
termination proving pre-processing technique presented in [3] to remove loop
transitions that we can directly prove terminating, without needing further sup-
porting invariants. In our termination benchmarks, about 80% of program loops
(e.g. encodings of for i in 1 .. n do-style loops) are eliminated at this stage.

Disproving Termination.When T2 cannot refine a termination argument based on
a given counterexample, it tries to prove existence of a recurrent set [14] witnessing
non-termination in the RS Synth. step. A recurrent set S is a set of program
states whose execution can eventually lead back to a state from S. T2 uses a
variation of the techniques from [4], restricted to only take a counterexample
execution into account and implemented as constraint solving via Z3.

Proving CTL. CTL subsumes reasoning about safety, termination, and nontermi-
nation, in addition to all state-based properties. T2 implements the bottom-up
strategy for CTL verification from [6]. Given a CTL property ', T2 first com-
putes a quantifier-free precondition precondi for the subformulas of ', and then
verifies the formula obtained from ' by replacing the subformulas by the cor-
responding preconditions. Preconditions for a property ' are computed using

6 T2 can optionally also synthesize disjunctive termination arguments [23] as imple-
mented in the original TERMINATOR [8].

3

13

EXPERIMENTS: TERMINATION

Tool Term Nonterm Fail Avg. (s)

AProVE 641 393 188 49.1
CppInv 566 374 282 65.5
Ctrl 445 0 777 80.0

T2-GPDR 627 442 153 23.6

T2-GPDR-NoP 589 438 195 31.4
T2-Spacer-NoP 591 429 202 33.5
T2-Impact-NoP 529 452 241 37.2 0.5 1 5 10 3060 300

0.5
1

5
10

30
60

120

300

T2-GPDR (s)

A
P
ro
V
E
(s
)

(a) (b)

Fig. 3: Termination evaluation results. (a) Overview table. (b) Comparison of T2 and
AProVE. Green (resp. blue) marks correspond to terminating (resp. non-terminating)
examples, and gray marks examples on which both provers failed. A ⇤ (resp. a 4)
indicates an example in which only T2 (resp. AProVE) succeeded, and � indicates an
example on which both provers return the same result.

as safety prover. Furthermore, we also consider three further versions of T2, using
the three di↵erent supported safety provers. For these configurations, we use no
termination proving pre-processing (NoP) step and only use our safety proving-
based strategy, to better evaluate the e↵ect of di↵erent safety back-ends. The
overall number of solved instances and average runtimes are displayed in Fig. 3(a),
and a detailed comparison of AProVE and T2-GPDR is shown in Fig. 3(b).7 All
provers are assumed to be sound, and no provers returned conflicting results.

The results show that T2’s simple architecture competes well with the portfo-
lio approach implemented in AProVE (which subsumes T2’s techniques), and is
more e↵ective than other tools. Comparing the di↵erent safety proving back-ends
of T2 shows that our F# implementation of Impact is nearly as e�cient as the
optimized C++ implementations of GPDR and Spacer. The di↵erent exploration
strategies of our safety provers yield di↵erent counterexamples, leading to di↵er-
ences in the resulting (non)termination proofs. The impact of our pre-processing
technique is visible when comparing T2-GPDR and T2-GPDR-NoP.

0.51 5 10 30 100
0.5
1

5
10

30

100

T2 (s)

Q
A
R
M
C
(s
)CTL Experiments. We evaluate T2’s CTL verifica-

tion techniques against the only other available tool,
Q’ARMC [2] on the 56 benchmarks from its evalua-
tion. These benchmarks are drawn from the I/O sub-
system of the Windows OS kernel, the back-end in-
frastructure of the PostgreSQL database server, and
the SoftUpdates patch system. They can be found
at http://www.cims.nyu.edu/~ejk/ctl/. The tools
were executed on a Core i7 950 CPU with a timeout of 100 seconds. Both tools
are able to successfully verify all examples. T2 needs 2.7 seconds on average,
whereas Q’ARMC takes 3.6 seconds. The scatterplot on the right shows how
proof times compare on the individual examples.

7 All experimental data can be viewed on https://www.starexec.org/starexec/

secure/details/job.jsp?id=11121.

5

Tool Term Nonterm Fail Avg. (s)

AProVE 641 393 188 49.1
CppInv 566 374 282 65.5
Ctrl 445 0 777 80.0

T2-GPDR 627 442 153 23.6

T2-GPDR-NoP 589 438 195 31.4
T2-Spacer-NoP 591 429 202 33.5
T2-Impact-NoP 529 452 241 37.2 0.5 1 5 10 3060 300

0.5
1

5
10

30
60

120

300

T2-GPDR (s)
A
P
ro
V
E
(s
)

(a) (b)

Fig. 3: Termination evaluation results. (a) Overview table. (b) Comparison of T2 and
AProVE. Green (resp. blue) marks correspond to terminating (resp. non-terminating)
examples, and gray marks examples on which both provers failed. A ⇤ (resp. a 4)
indicates an example in which only T2 (resp. AProVE) succeeded, and � indicates an
example on which both provers return the same result.

as safety prover. Furthermore, we also consider three further versions of T2, using
the three di↵erent supported safety provers. For these configurations, we use no
termination proving pre-processing (NoP) step and only use our safety proving-
based strategy, to better evaluate the e↵ect of di↵erent safety back-ends. The
overall number of solved instances and average runtimes are displayed in Fig. 3(a),
and a detailed comparison of AProVE and T2-GPDR is shown in Fig. 3(b).7 All
provers are assumed to be sound, and no provers returned conflicting results.

The results show that T2’s simple architecture competes well with the portfo-
lio approach implemented in AProVE (which subsumes T2’s techniques), and is
more e↵ective than other tools. Comparing the di↵erent safety proving back-ends
of T2 shows that our F# implementation of Impact is nearly as e�cient as the
optimized C++ implementations of GPDR and Spacer. The di↵erent exploration
strategies of our safety provers yield di↵erent counterexamples, leading to di↵er-
ences in the resulting (non)termination proofs. The impact of our pre-processing
technique is visible when comparing T2-GPDR and T2-GPDR-NoP.

0.51 5 10 30 100
0.5
1

5
10

30

100

T2 (s)

Q
A
R
M
C
(s
)CTL Experiments. We evaluate T2’s CTL verifica-

tion techniques against the only other available tool,
Q’ARMC [2] on the 56 benchmarks from its evalua-
tion. These benchmarks are drawn from the I/O sub-
system of the Windows OS kernel, the back-end in-
frastructure of the PostgreSQL database server, and
the SoftUpdates patch system. They can be found
at http://www.cims.nyu.edu/~ejk/ctl/. The tools
were executed on a Core i7 950 CPU with a timeout of 100 seconds. Both tools
are able to successfully verify all examples. T2 needs 2.7 seconds on average,
whereas Q’ARMC takes 3.6 seconds. The scatterplot on the right shows how
proof times compare on the individual examples.

7 All experimental data can be viewed on https://www.starexec.org/starexec/

secure/details/job.jsp?id=11121.

5

1222 termination proving benchmarks from Termination
Competition 2015.

14

EXPERIMENTS: CTL
CTL Experiments.

0.5 1 5 10 30 100
0.5
1

5
10

30

100

T2 (s)

Q
A
R
M
C
(s
)

We evaluate T2’s

CTL verification techniques against the only other available tool, Q’ARMC [2]
on the 56 benchmarks from its evaluation. These benchmarks are drawn from
the I/O subsystem of the Windows OS kernel, the back-end infrastructure of
the PostgreSQL database server, and the SoftUpdates patch system. They can
be found at http://www.cims.nyu.edu/~ejk/ctl/. The tools were executed on
a Core i7 950 CPU with a timeout of 100 seconds. Both tools are able to suc-
cessfully verify all examples. T2 needs 2.7 seconds on average, whereas Q’ARMC
takes 3.6 seconds. The scatterplot on the right shows how proof times compare
on the individual examples.

Future work. In future developments, we wish to integrate and improve techniques
for conditional termination, which would be used to improve the strength of our
property verification. Finally, we would like to improve T2 to natively support
reasoning about the heap, recursion, and concurrency.

References

1. A. Albarghouthi, J. Berdine, B. Cook, and Z. Kincaid. Spatial interpolants. In
ESOP’15.

2. T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quantified
horn clauses. In CAV’13.

3. M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving through
cooperation. In CAV’13.

4. M. Brockschmidt, T. Ströder, C. Otto, and Jürgen Giesl. Automated detection of
non-termination and NullPointerExceptions for Java Bytecode. In FOVEOOS’11.

5. B. Cook, H. Khlaaf, and N. Piterman. Fairness for infinite-state systems. In
TACAS’15.

6. B. Cook, H. Khlaaf, and N. Piterman. Faster temporal reasoning for infinite-state
programs. In FMCAD’14.

7. B. Cook, H. Khlaaf, and N. Piterman. On automation of CTL⇤ verification for
infinite-state systems. In CAV’15.

8. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI’06.

9. B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination proving.
In TACAS’13.

10. L. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In TACAS’08.

6

56 benchmarks where T2 takes 2.7 seconds on average
and Q’ARMC takes 3.6 seconds.

T2: RECAP

Supports automatic verification of CTL, Fair-CTL, CTL*,
termination and safety properties over (integer) infinite-
state systems.

Open-Source: https://github.com/mmjb/T2

Supports LLVM languages via LLVM2KITTeL +T2 extension:
https://github.com/hkhlaaf/llvm2kittel

For a close-up demo: TACAS Tool Market  
Room: Outside Blauwe Zaal, floor 1

15

https://github.com/mmjb/T2
https://github.com/hkhlaaf/llvm2kittel

